creative_studio/IMPLEMENTATION_PLAN.md
2026-01-25 19:27:44 +08:00

1505 lines
38 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Creative Studio - Comprehensive Implementation Plan
**Platform**: 灵感工坊 (Creative Studio) - AI 创作平台
**Version**: 2.0
**Date**: 2024-01-24
**Status**: Active Development
---
## Executive Summary
This document provides a comprehensive implementation plan for the Creative Studio platform, based on the complete platform specification document. The platform follows a **Skill-centric architecture** where Agents provide fixed workflow frameworks and Skills provide configurable behavioral guidance.
### Current Implementation Status
| Component | Status | Completion |
|-----------|--------|------------|
| **Backend Framework** | ✅ Implemented | 90% |
| **Skills CRUD** | ✅ Implemented | 95% |
| **Agents Viewing** | ✅ Implemented | 80% |
| **Projects CRUD** | ⚠️ Partial | 60% |
| **Memory System** | ❌ Missing | 0% |
| **Review System** | ❌ Missing | 0% |
| **Execution Monitoring** | ⚠️ Basic | 40% |
| **Frontend Pages** | ⚠️ Partial | 50% |
| **Skill Marketplace** | ❌ Missing | 0% |
---
## Architecture Overview
### Core Design Principles
1. **"Agent 固定Skill 可配"** - Platform maintains Agent framework, users configure Skills
2. **"Skill 指导行为"** - Skill behavior guides are integrated into prompts to guide LLM behavior
3. **"全局上下文 + 记忆系统"** - Global context + memory system ensures multi-episode consistency
4. **"全自动 + 人工审核"** - Full automatic creation with human review
### System Hierarchy
```
Series Project (剧集项目)
├── Uses Agent (固定工作流模板)
│ └── Calls Skills (可配置能力单元)
├── Global Context (全局上下文)
│ ├── World Setting (世界观)
│ ├── Character Profiles (人物小传)
│ ├── Scene Settings (场景设定)
│ └── Overall Outline (整体大纲)
├── Memory System (记忆系统)
│ ├── Event Timeline (事件时间线)
│ ├── Pending Threads (待收线问题)
│ ├── Foreshadowing (伏笔追踪)
│ └── Character States (人物状态)
└── Episodes (子项目)
├── EP01, EP02, ...
└── Each episode: Structure → Outline → Content → Review → Memory Update
```
---
## Phase 1: Core Foundation (Current - Week 1-2)
### 1.1 Backend Infrastructure ✅ (90% Complete)
**Status**: Implemented
**Location**: `C:\Users\Wolfycz\huijing\creative_studio\backend\`
#### Implemented Components:
- **FastAPI Application** (`app/main.py`)
- CORS configuration
- Lifespan management
- Route registration
- Health checks
- **Skill Management** (`app/core/skills/skill_manager.py`)
- Load and parse SKILL.md files
- Extract behavior guides
- Cache management
- Builtin vs User Skills separation
- CRUD operations for user Skills
- **Data Models** (`app/models/`)
- `skill.py`: Skill, SkillTool, SkillConfig
- `project.py`: SeriesProject, Episode, GlobalContext, Memory
- **LLM Integration** (`app/core/llm/glm_client.py`)
- GLM-4.7 integration
- `chat_with_skill()` method for Skill-guided generation
- **Series Creation Agent** (`app/core/agents/series_creation_agent.py`)
- Fixed workflow implementation
- 5-stage execution: Structure → Outline → Dialogue → Review → Memory
- Context building
- Basic retry logic
#### Remaining Tasks:
- [ ] Enhance error handling and logging
- [ ] Add API rate limiting
- [ ] Implement request/response validation
- [ ] Add API versioning strategy
- [ ] Create comprehensive test suite
**API Endpoints Implemented**:
| Endpoint | Method | Status |
|----------|--------|--------|
| `/api/v1/skills/` | GET | ✅ |
| `/api/v1/skills/{id}` | GET | ✅ |
| `/api/v1/skills/` | POST | ✅ |
| `/api/v1/skills/{id}` | PUT | ✅ |
| `/api/v1/skills/{id}` | DELETE | ✅ |
| `/api/v1/skills/{id}/test` | POST | ✅ |
| `/api/v1/projects/` | GET | ✅ |
| `/api/v1/projects/` | POST | ✅ |
| `/api/v1/projects/{id}` | GET | ✅ |
| `/api/v1/projects/{id}/execute` | POST | ✅ |
| `/api/v1/projects/{id}/execute-batch` | POST | ✅ |
---
### 1.2 Frontend Infrastructure ⚠️ (50% Complete)
**Status**: Partially Implemented
**Location**: `C:\Users\Wolfycz\huijing\creative_studio\frontend\`
#### Implemented Pages:
1. **Skill Management** (`src/pages/SkillManagement.tsx`) ✅
- Skills listing with filtering
- Builtin vs User Skills distinction
- Create, Edit, Delete operations
- Skill testing modal
- Detail drawer with behavior guide view
- Search and category filtering
- Grid/List view toggle
2. **Agent Management** (`src/pages/AgentManagement.tsx`) ✅
- Read-only Agent viewing
- Workflow visualization
- Skill bindings display
3. **Project List** (`src/pages/ProjectList.tsx`) ✅
- Project listing
- Status indicators
4. **Project Create** (`src/pages/ProjectCreate.tsx`) ⚠️
- Basic form
- Needs enhancement for global context
5. **Execution Monitor** (`src/pages/ExecutionMonitor.tsx`) ⚠️
- Basic monitoring
- Needs real-time updates
#### Missing Frontend Components:
- [ ] Global Context Editor
- [ ] Memory System Viewer
- [ ] Review System UI
- [ ] Episode Detail View
- [ ] Skill Configuration Interface
- [ ] Batch Execution Controls
- [ ] Quality Report Viewer
- [ ] Skill Marketplace
---
## Phase 2: Memory System Implementation (Week 3-4)
### 2.1 Backend - Memory System
**Priority**: HIGH
**Complexity**: Medium
#### Data Models to Implement:
```python
# Event Timeline
class TimelineEvent(BaseModel):
episode: int
event: str
timestamp: datetime
characters_involved: List[str] = []
importance: str = "medium" # low, medium, high
# Pending Threads (Foreshadowing)
class PendingThread(BaseModel):
id: str
description: str
introduced_at: int
importance: str # high, medium, low
resolved: bool = False
resolved_at: Optional[int] = None
reminder_episode: Optional[int] = None
status: str = "pending" # pending,跟进中,已收线
# Character State History
class CharacterStateChange(BaseModel):
episode: int
state: str
change: str
emotional_impact: Optional[str] = None
# Enhanced Memory System
class EnhancedMemory(BaseModel):
eventTimeline: List[TimelineEvent] = []
pendingThreads: List[PendingThread] = []
characterStates: Dict[str, List[CharacterStateChange]] = {}
foreshadowing: List[ForeshadowingEvent] = []
relationships: Dict[str, Dict[str, str]] = {} # character relationships
```
#### API Endpoints to Create:
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/v1/projects/{id}/memory` | GET | Get project memory |
| `/api/v1/projects/{id}/memory/timeline` | GET | Get event timeline |
| `/api/v1/projects/{id}/memory/threads` | GET | Get pending threads |
| `/api/v1/projects/{id}/memory/threads` | POST | Add new thread |
| `/api/v1/projects/{id}/memory/threads/{thread_id}` | PUT | Update thread |
| `/api/v1/projects/{id}/memory/characters` | GET | Get character states |
| `/api/v1/projects/{id}/memory/resolve-thread` | POST | Mark thread as resolved |
#### Memory Manager Implementation:
```python
# app/core/memory/memory_manager.py
class MemoryManager:
"""Manage project memory system"""
async def extract_events_from_episode(
self,
episode_content: str,
episode_number: int
) -> List[TimelineEvent]:
"""Extract key events from completed episode"""
# Use LLM to identify and extract events
pass
async def detect_foreshadowing(
self,
episode_content: str,
episode_number: int
) -> List[ForeshadowingEvent]:
"""Detect new foreshadowing in episode"""
pass
async def update_character_states(
self,
episode_content: str,
episode_number: int,
characters: List[str]
) -> Dict[str, CharacterStateChange]:
"""Track character state changes"""
pass
async def check_consistency(
self,
episode_content: str,
memory: Memory
) -> List[ConsistencyIssue]:
"""Check episode consistency with memory"""
pass
async def suggest_thread_resolution(
self,
thread: PendingThread,
current_episode: int
) -> ResolutionSuggestion:
"""Suggest how to resolve pending threads"""
pass
```
### 2.2 Frontend - Memory System UI
**Components to Build:**
1. **Memory System Viewer Page** (`src/pages/MemorySystem.tsx`)
```typescript
interface MemorySystemProps {
projectId: string;
}
// Features:
// - Tabbed interface: Timeline | Threads | Characters | Foreshadowing
// - Timeline: Chronological event list with episode markers
// - Threads: Cards showing pending threads with urgency indicators
// - Characters: State history for each character
// - Visual relationship graph
```
2. **Timeline Component**
```typescript
// Features:
// - Vertical timeline visualization
// - Episode markers
// - Event cards with character avatars
// - Importance color-coding
// - Filter by character/episode/importance
// - Click to view details
```
3. **Pending Threads Component**
```typescript
// Features:
// - Thread cards with:
// - Description
// - Introduced episode
// - Importance level (High/Medium/Low)
// - Status (Pending/In Progress/Resolved)
// - Suggested resolution episode
// - Manual add/edit thread
// - Mark as resolved
// - Set reminder episode
// - Filter by status/importance
```
4. **Character States Component**
```typescript
// Features:
// - Character list with current states
// - State history timeline per character
// - State change indicators
// - Relationship visualization
// - Emotional state tracking
```
---
## Phase 3: Review System Implementation (Week 5-6)
### 3.1 Backend - Review System
**Priority**: HIGH
**Complexity**: High
#### Review Configuration Model:
```python
class ReviewConfig(BaseModel):
"""Review configuration - customizable by users"""
# Enabled review Skills
enabled_review_skills: List[str] = [
"consistency_checker",
"dialogue_quality_checker",
"plot_logic_checker"
]
# Overall strictness
overall_strictness: str = "medium" # loose, medium, strict
# Dimension-specific settings
dimension_settings: Dict[str, DimensionConfig] = {}
# Custom rules
custom_rules: List[CustomRule] = []
# Presets
preset_name: Optional[str] = None
class DimensionConfig(BaseModel):
enabled: bool = True
strictness: float = 0.5 # 0.0 to 1.0
custom_rules: List[CustomRule] = []
class CustomRule(BaseModel):
id: str
name: str
description: str
trigger_condition: str
severity: str # low, medium, high
enabled: bool = True
```
#### Review Result Model:
```python
class ReviewResult(BaseModel):
episode_id: str
episode_number: int
# Overall score
overall_score: float
passed: bool
# Dimension scores
dimension_scores: Dict[str, float] = {}
# Issues found
issues: List[ReviewIssue] = []
# New foreshadowing detected
new_foreshadowing: List[ForeshadowingEvent] = []
# Resolved threads
resolved_threads: List[str] = []
class ReviewIssue(BaseModel):
id: str
type: str
dimension: str
severity: str # low, medium, high
location: Location
description: str
original_text: Optional[str] = None
suggestion: str
auto_fix_available: bool = False
class Location(BaseModel):
episode: int
scene: int
line: Optional[int] = None
```
#### Review Manager Implementation:
```python
# app/core/review/review_manager.py
class ReviewManager:
"""Manage review process"""
async def review_episode(
self,
episode: Episode,
project: SeriesProject,
config: ReviewConfig
) -> ReviewResult:
"""Execute full review process"""
# Run each enabled review Skill
dimension_results = []
for skill_id in config.enabled_review_skills:
result = await self._run_review_skill(
skill_id, episode, project, config
)
dimension_results.append(result)
# Aggregate results
review_result = self._aggregate_results(dimension_results)
# Check custom rules
custom_issues = await self._check_custom_rules(
episode, config.custom_rules
)
review_result.issues.extend(custom_issues)
# Determine pass/fail
threshold = config.dimension_settings.get("threshold", 85)
review_result.passed = review_result.overall_score >= threshold
return review_result
async def _run_review_skill(
self,
skill_id: str,
episode: Episode,
project: SeriesProject,
config: ReviewConfig
) -> DimensionResult:
"""Run a single review Skill"""
skill = await skill_manager.load_skill(skill_id)
# Build review prompt
prompt = self._build_review_prompt(
skill, episode, project, config
)
# Execute with Skill behavior guide
response = await glm_client.chat_with_skill(
skill_behavior=skill.behavior_guide,
user_input=prompt,
context={
"episode_content": episode.content,
"global_context": project.globalContext,
"memory": project.memory
},
temperature=0.3
)
# Parse response
return self._parse_review_response(response, skill_id)
def _aggregate_results(
self,
dimension_results: List[DimensionResult]
) -> ReviewResult:
"""Aggregate dimension results into overall score"""
# Weighted average based on dimension settings
pass
```
#### API Endpoints:
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/v1/projects/{id}/review-config` | GET | Get review config |
| `/api/v1/projects/{id}/review-config` | PUT | Update review config |
| `/api/v1/projects/{id}/review-presets` | GET | List preset configs |
| `/api/v1/projects/{id}/episodes/{ep_num}/review` | POST | Run review |
| `/api/v1/review/dimensions` | GET | List available dimensions |
| `/api/v1/review/custom-rules` | POST | Add custom rule |
| `/api/v1/review/custom-rules/{id}` | DELETE | Delete custom rule |
### 3.2 Frontend - Review System UI
**Components to Build:**
1. **Review Configuration Page** (`src/pages/ReviewConfig.tsx`)
```typescript
// Features:
// - Dimension selection with toggles
// - Strictness sliders per dimension
// - Custom rules builder
// - Preset selection (Draft/Standard/Strict)
// - Save/load presets
// - Preview configuration impact
```
2. **Dimension Configuration Component**
```typescript
// Features:
// - Enable/disable dimension
// - Strictness slider (0-100)
// - Weight adjustment
// - Custom rules for dimension
// - Examples of what's checked
```
3. **Custom Rule Builder**
```typescript
// Features:
// - Rule name and description
// - Trigger condition builder (natural language)
// - Severity selector
// - Test rule with sample content
// - Rule templates
```
4. **Review Results Viewer** (`src/pages/ReviewResults.tsx`)
```typescript
// Features:
// - Overall score display with gauge
// - Dimension score breakdown (bar chart)
// - Issues list grouped by severity
// - Issue detail cards:
// - Location link
// - Original text
// - Suggestion
// - Auto-fix button (if available)
// - Ignore option
// - Accept/Reject decisions
// - Export report
```
5. **Review Dashboard**
```typescript
// Features:
// - Batch review summary
// - Pass/fail statistics
// - Common issues
// - Trend analysis
// - Quality metrics over time
```
---
## Phase 4: Advanced Execution Features (Week 7-8)
### 4.1 Backend - Enhanced Execution
**Priority**: MEDIUM
**Complexity**: High
#### Features to Implement:
1. **Batch Execution Mode**
```python
# app/core/execution/batch_executor.py
class BatchExecutor:
"""Execute episodes in batches with user review between"""
async def execute_batch(
self,
project: SeriesProject,
start_episode: int,
end_episode: int,
batch_config: BatchConfig
) -> BatchResult:
"""Execute a batch of episodes"""
results = []
for ep_num in range(start_episode, end_episode + 1):
# Execute episode
episode = await agent.execute_episode(
project, ep_num
)
# Run review
review = await review_manager.review_episode(
episode, project, project.review_config
)
# Check if meets quality threshold
if review.overall_score < batch_config.quality_threshold:
# Auto-retry or mark for review
if episode.retry_count < batch_config.max_retries:
episode = await self._retry_episode(
project, ep_num, review
)
else:
episode.status = "needs-review"
results.append(episode)
# Wait for user approval before next batch
return BatchResult(
episodes=results,
needs_review=[ep for ep in results if ep.status == "needs-review"],
batch_summary=self._generate_summary(results)
)
```
2. **Real-time Progress Streaming**
```python
# Use WebSocket or Server-Sent Events for real-time updates
@app.websocket("/ws/projects/{project_id}/execute")
async def execute_episode_stream(
websocket: WebSocket,
project_id: str,
episode_number: int
):
"""Stream execution progress in real-time"""
await websocket.accept()
# Send stage updates
for stage in agent.execution_stages:
await websocket.send_json({
"type": "stage_start",
"stage": stage.name,
"message": f"Starting {stage.display_name}..."
})
result = await stage.execute()
await websocket.send_json({
"type": "stage_complete",
"stage": stage.name,
"result": result
})
await websocket.send_json({
"type": "episode_complete",
"episode": episode_result
})
```
3. **Auto-retry with Feedback**
```python
class RetryManager:
"""Manage automatic retry logic"""
async def should_retry(
self,
episode: Episode,
review: ReviewResult
) -> bool:
"""Determine if episode should be retried"""
config = episode.project.autoRetryConfig
# Check retry count
if episode.retry_count >= config.maxRetries:
return False
# Check score threshold
if review.overall_score >= config.qualityThreshold:
return False
# Check if issues are fixable
fixable_issues = [
issue for issue in review.issues
if issue.auto_fix_available or issue.severity != "high"
]
return len(fixable_issues) > 0
async def retry_episode(
self,
episode: Episode,
review: ReviewResult
) -> Episode:
"""Retry episode generation with review feedback"""
# Build retry context
retry_context = {
"attempt": episode.retry_count + 1,
"previous_result": episode.content,
"review_feedback": self._build_feedback(review.issues),
"suggestions": [issue.suggestion for issue in review.issues]
}
# Re-execute with feedback
new_episode = await agent.execute_episode(
episode.project,
episode.number,
retry_context=retry_context
)
new_episode.retry_count = episode.retry_count + 1
return new_episode
```
#### API Endpoints:
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/v1/projects/{id}/execute-batch` | POST | Execute batch |
| `/api/v1/projects/{id}/execute-auto` | POST | Full auto execution |
| `/api/v1/projects/{id}/execution-status` | GET | Get execution status |
| `/api/v1/projects/{id}/stop-execution` | POST | Stop execution |
| `/ws/projects/{id}/execute` | WebSocket | Real-time execution stream |
### 4.2 Frontend - Enhanced Execution UI
**Components to Build:**
1. **Batch Execution Config** (`src/pages/BatchExecution.tsx`)
```typescript
// Features:
// - Batch size selector
// - Episode range picker
// - Per-episode configuration:
// - Duration target
// - Style preset
// - Focus areas
// - Quality threshold setting
// - Auto-retry configuration
// - Preview batch plan
```
2. **Real-time Execution Monitor** (Enhanced)
```typescript
// Features:
// - Live progress bar
// - Current stage display
// - Real-time content preview (streaming)
// - Stage-by-stage logs
// - Pause/Resume/Stop controls
// - Time estimation
// - Quality metrics live update
```
3. **Batch Review Dashboard**
```typescript
// Features:
// - Batch completion summary
// - Episode cards with status
// - Quality score comparison
// - Issues overview
// - Batch approval decision:
// - Accept all
// - Review issues
// - Retry failed
// - Regenerate batch
// - Next batch configuration
```
4. **Quality Report Viewer** (`src/pages/QualityReport.tsx`)
```typescript
// Features:
// - Overall quality metrics
// - Dimension score charts
// - Trend analysis across episodes
// - Issue statistics
// - Comparison to thresholds
// - Improvement suggestions
// - Export to PDF/Excel
```
---
## Phase 5: Skill Marketplace (Week 9-10)
### 5.1 Backend - Marketplace
**Priority**: MEDIUM
**Complexity**: Medium
#### Data Models:
```python
class MarketplaceSkill(BaseModel):
"""Skill in marketplace"""
# Base skill data
skill: Skill
# Marketplace-specific
author_id: str
author_name: str
published_at: datetime
downloads: int = 0
rating: float = 0.0
rating_count: int = 0
# Categorization
category: str
tags: List[str]
# Usage stats
usage_count: int = 0
success_rate: float = 0.0
# Versioning
version: str
changelog: List[str] = []
parent_skill_id: Optional[str] = None # If forked
class SkillReview(BaseModel):
skill_id: str
user_id: str
rating: int # 1-5
comment: str
created_at: datetime
usage_context: Optional[str] = None
```
#### Marketplace Manager:
```python
# app/core/marketplace/marketplace_manager.py
class MarketplaceManager:
"""Manage Skill marketplace"""
async def publish_skill(
self,
skill_id: str,
user_id: str,
marketplace_data: MarketplaceMetadata
) -> MarketplaceSkill:
"""Publish user skill to marketplace"""
# Validate skill
skill = await skill_manager.load_skill(skill_id)
if not skill or skill.type != "user":
raise ValueError("Only user skills can be published")
# Create marketplace listing
marketplace_skill = MarketplaceSkill(
skill=skill,
author_id=user_id,
**marketplace_data.dict()
)
# Save to marketplace storage
await self.marketplace_repo.create(marketplace_skill)
return marketplace_skill
async def fork_skill(
self,
original_skill_id: str,
user_id: str,
modifications: SkillUpdate
) -> Skill:
"""Create a fork of existing skill"""
original = await self.get_marketplace_skill(original_skill_id)
# Create new user skill
new_skill_id = f"{original_skill_id}-fork-{uuid.uuid4().hex[:8]}"
new_skill = await skill_manager.create_user_skill(
SkillCreate(
id=new_skill_id,
name=f"{original.skill.name} (Fork)",
content=original.skill.behavior_guide,
category=original.category,
tags=original.tags
)
)
# Track fork relationship
new_skill.parent_skill_id = original_skill_id
return new_skill
async def rate_skill(
self,
skill_id: str,
user_id: str,
rating: int,
comment: str
) -> SkillReview:
"""Rate and review a skill"""
pass
async def get_recommendations(
self,
project_type: str,
user_history: List[str]
) -> List[MarketplaceSkill]:
"""Get recommended skills based on context"""
pass
```
#### API Endpoints:
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/v1/marketplace/skills` | GET | Browse marketplace |
| `/api/v1/marketplace/skills/{id}` | GET | Get skill details |
| `/api/v1/marketplace/skills/{id}/install` | POST | Install skill |
| `/api/v1/marketplace/skills/publish` | POST | Publish skill |
| `/api/v1/marketplace/skills/{id}/fork` | POST | Fork skill |
| `/api/v1/marketplace/skills/{id}/rate` | POST | Rate skill |
| `/api/v1/marketplace/skills/{id}/reviews` | GET | Get reviews |
| `/api/v1/marketplace/recommendations` | GET | Get recommendations |
| `/api/v1/marketplace/categories` | GET | Get categories |
### 5.2 Frontend - Marketplace UI
**Components to Build:**
1. **Marketplace Home** (`src/pages/Marketplace.tsx`)
```typescript
// Features:
// - Search bar with filters
// - Category browsing
// - Featured skills carousel
// - Popular skills grid
// - New arrivals
// - User's custom skills section
// - Skill cards with:
// - Name, description
// - Rating, downloads
// - Author, category
// - Install/Fork buttons
```
2. **Skill Detail Page** (`src/pages/MarketplaceSkillDetail.tsx`)
```typescript
// Features:
// - Full skill description
// - Behavior guide preview
// - Configuration parameters
// - Usage examples
// - Reviews section
// - Rating distribution
// - Related skills
// - Version history
// - Install/Fork actions
```
3. **Skill Publisher** (`src/pages/PublishSkill.tsx`)
```typescript
// Features:
// - Skill selection
// - Marketplace metadata:
// - Display name
// - Description
// - Category, tags
// - Screenshots
// - Examples
// - Version notes
// - Pricing (if applicable)
// - Preview listing
// - Publish action
```
4. **My Skills Dashboard**
```typescript
// Features:
// - Published skills list
// - Stats: downloads, ratings, usage
// - Fork management
// - Review responses
// - Version management
// - Skill analytics
```
---
## Phase 6: Advanced Features (Week 11-12)
### 6.1 Global Context Editor
**Backend**:
- Enhanced CRUD for GlobalContext
- Version history
- Conflict detection
- Template system
**Frontend**:
- Rich text editors for each section
- Visual character relationship editor
- Scene builder with previews
- Import/export templates
- Version comparison
### 6.2 Skill Configuration Interface
**Backend**:
- Parameter schema validation
- Configuration templates
- Preset management
**Frontend**:
- Visual parameter editors:
- Sliders for numeric values
- Selects for options
- Toggles for booleans
- Rich text for guides
- Real-time preview
- Configuration save/load
- Preset application
### 6.3 Export System
**Backend**:
- Multi-format export:
- Markdown
- PDF
- Word (DOCX)
- Final Draft
- Custom templates
**Frontend**:
- Export configuration
- Template selection
- Format options
- Preview before export
- Batch export
### 6.4 Analytics Dashboard
**Backend**:
- Usage metrics collection
- Performance tracking
- Quality analytics
- Storage optimization
**Frontend**:
- Usage statistics
- Creation speed charts
- Quality trends
- Storage usage
- API rate limits
---
## Data Models Summary
### Core Models Status
| Model | Status | Fields | Completeness |
|-------|--------|--------|--------------|
| **Skill** | ✅ | 15 fields | 95% |
| **SkillTool** | ✅ | 4 fields | 100% |
| **SkillConfig** | ✅ | 3 fields | 90% |
| **SeriesProject** | ⚠️ | 12 fields | 70% |
| **GlobalContext** | ⚠️ | 5 fields | 60% |
| **CharacterProfile** | ⚠️ | 7 fields | 70% |
| **SceneSetting** | ⚠️ | 3 fields | 80% |
| **Memory** | ❌ | 4 fields | 0% |
| **Episode** | ⚠️ | 12 fields | 70% |
| **EpisodeIssue** | ✅ | 4 fields | 100% |
| **ReviewConfig** | ❌ | TBD | 0% |
| **ReviewResult** | ❌ | TBD | 0% |
| **MarketplaceSkill** | ❌ | TBD | 0% |
---
## API Endpoints Summary
### Implemented (13 endpoints)
```
Skills:
✅ GET /api/v1/skills/
✅ GET /api/v1/skills/{id}
✅ POST /api/v1/skills/
✅ PUT /api/v1/skills/{id}
✅ DELETE /api/v1/skills/{id}
✅ POST /api/v1/skills/{id}/test
✅ GET /api/v1/skills/categories/list
Projects:
✅ GET /api/v1/projects/
✅ POST /api/v1/projects/
✅ GET /api/v1/projects/{id}
✅ PUT /api/v1/projects/{id}
✅ DELETE /api/v1/projects/{id}
✅ GET /api/v1/projects/{id}/episodes
✅ GET /api/v1/projects/{id}/episodes/{ep_num}
✅ POST /api/v1/projects/{id}/execute
✅ POST /api/v1/projects/{id}/execute-batch
✅ GET /api/v1/projects/{id}/memory
```
### To Implement (40+ endpoints)
```
Memory System:
❌ GET /api/v1/projects/{id}/memory/timeline
❌ POST /api/v1/projects/{id}/memory/threads
❌ PUT /api/v1/projects/{id}/memory/threads/{thread_id}
❌ POST /api/v1/projects/{id}/memory/resolve-thread
❌ GET /api/v1/projects/{id}/memory/characters
Review System:
❌ GET /api/v1/projects/{id}/review-config
❌ PUT /api/v1/projects/{id}/review-config
❌ GET /api/v1/projects/{id}/review-presets
❌ POST /api/v1/projects/{id}/episodes/{ep_num}/review
❌ GET /api/v1/review/dimensions
❌ POST /api/v1/review/custom-rules
❌ DELETE /api/v1/review/custom-rules/{id}
Execution:
❌ POST /api/v1/projects/{id}/execute-auto
❌ GET /api/v1/projects/{id}/execution-status
❌ POST /api/v1/projects/{id}/stop-execution
❌ WS /ws/projects/{id}/execute
Marketplace:
❌ GET /api/v1/marketplace/skills
❌ GET /api/v1/marketplace/skills/{id}
❌ POST /api/v1/marketplace/skills/{id}/install
❌ POST /api/v1/marketplace/skills/publish
❌ POST /api/v1/marketplace/skills/{id}/fork
❌ POST /api/v1/marketplace/skills/{id}/rate
❌ GET /api/v1/marketplace/skills/{id}/reviews
❌ GET /api/v1/marketplace/recommendations
❌ GET /api/v1/marketplace/categories
Export:
❌ POST /api/v1/projects/{id}/export
❌ GET /api/v1/projects/{id}/export/{export_id}
Analytics:
❌ GET /api/v1/analytics/usage
❌ GET /api/v1/analytics/performance
❌ GET /api/v1/analytics/quality
```
---
## Frontend Components Summary
### Implemented (4 pages)
- ✅ SkillManagement - Complete
- ✅ AgentManagement - Read-only
- ✅ ProjectList - Basic
- ⚠️ ProjectCreate - Basic
- ⚠️ ExecutionMonitor - Basic
- ✅ HomePage - Basic
### To Build (15+ components)
**Core Pages:**
- ❌ GlobalContextEditor
- ❌ MemorySystemViewer
- ❌ ReviewConfig
- ❌ ReviewResults
- ❌ EpisodeDetail
- ❌ BatchExecution
- ❌ QualityReport
- ❌ Marketplace
- ❌ MarketplaceSkillDetail
- ❌ PublishSkill
- ❌ MySkills
- ❌ ExportPage
- ❌ AnalyticsDashboard
- ❌ Settings
**Shared Components:**
- ❌ TimelineViewer
- ❌ ThreadTracker
- ❌ CharacterStateViewer
- ❌ RelationshipGraph
- ❌ DimensionConfig
- ❌ CustomRuleBuilder
- ❌ RealTimeMonitor
- ❌ QualityGauge
- ❌ SkillCard
- ❌ EpisodeCard
---
## Implementation Priority Matrix
### High Priority (Must Have)
| Feature | Complexity | Impact | Timeline |
|---------|-----------|--------|----------|
| Memory System | Medium | High | Week 3-4 |
| Review System | High | High | Week 5-6 |
| Enhanced Execution | Medium | High | Week 7-8 |
| Global Context Editor | Medium | High | Week 6 |
| Episode Detail View | Low | High | Week 5 |
### Medium Priority (Should Have)
| Feature | Complexity | Impact | Timeline |
|---------|-----------|--------|----------|
| Skill Marketplace | Medium | Medium | Week 9-10 |
| Batch Execution UI | Medium | Medium | Week 8 |
| Quality Reports | Low | Medium | Week 8 |
| Export System | Medium | Medium | Week 11 |
| Analytics | Low | Medium | Week 12 |
### Low Priority (Nice to Have)
| Feature | Complexity | Impact | Timeline |
|---------|-----------|--------|----------|
| Skill Recommendations | High | Low | Week 10 |
| Custom Themes | Low | Low | Week 12 |
| Team Collaboration | High | Low | Post-MVP |
| API Platform | High | Low | Post-MVP |
---
## Technical Debt & Refactoring
### Current Issues
1. **Memory System**: Not implemented - placeholder only
2. **Review System**: Basic consistency check only
3. **Data Persistence**: In-memory only, needs database
4. **Error Handling**: Basic, needs comprehensive coverage
5. **Testing**: No test coverage
6. **Documentation**: Incomplete
7. **Frontend State Management**: Basic, needs optimization
### Refactoring Priorities
1. **Week 3-4**: Add database persistence (PostgreSQL/MongoDB)
2. **Week 5-6**: Implement comprehensive error handling
3. **Week 7-8**: Add unit and integration tests
4. **Week 9-10**: Performance optimization
5. **Week 11-12**: Security audit and hardening
---
## Development Guidelines
### Backend Development
1. **Follow FastAPI best practices**
- Use async/await throughout
- Implement proper dependency injection
- Use Pydantic for validation
- Add comprehensive error handling
2. **Code Organization**
```
backend/
├── app/
│ ├── api/v1/ # API routes
│ ├── core/ # Core business logic
│ │ ├── agents/ # Agent implementations
│ │ ├── skills/ # Skill management
│ │ ├── memory/ # Memory system
│ │ ├── review/ # Review system
│ │ └── execution/ # Execution engine
│ ├── models/ # Pydantic models
│ ├── db/ # Database repositories
│ └── utils/ # Utilities
└── tests/ # Test suite
```
3. **API Design Principles**
- RESTful conventions
- Consistent response formats
- Proper HTTP status codes
- Comprehensive OpenAPI docs
### Frontend Development
1. **Follow React best practices**
- Functional components with hooks
- TypeScript for type safety
- Ant Design for UI components
- Proper state management
2. **Code Organization**
```
frontend/
├── src/
│ ├── pages/ # Page components
│ ├── components/ # Reusable components
│ ├── services/ # API services
│ ├── stores/ # State management
│ ├── types/ # TypeScript types
│ └── utils/ # Utilities
└── tests/ # Test suite
```
3. **UI/UX Principles**
- Responsive design
- Loading states
- Error handling
- User feedback
- Accessibility
---
## Testing Strategy
### Backend Testing
1. **Unit Tests** (Target: 80% coverage)
- Model validation
- Business logic
- Utility functions
2. **Integration Tests**
- API endpoints
- Database operations
- External service calls
3. **End-to-End Tests**
- Complete workflows
- Multi-step operations
- Error scenarios
### Frontend Testing
1. **Component Tests**
- Individual components
- User interactions
- State changes
2. **Integration Tests**
- Page flows
- API integration
- State management
3. **E2E Tests**
- User journeys
- Critical paths
- Cross-browser testing
---
## Deployment Strategy
### Development Environment
- Backend: FastAPI with uvicorn
- Frontend: Vite dev server
- Database: SQLite (local), PostgreSQL (staging)
- Hot reload enabled
### Staging Environment
- Docker containerization
- PostgreSQL database
- Redis for caching
- Load testing
### Production Environment
- Kubernetes deployment
- Horizontal scaling
- Database replication
- CDN for static assets
- Monitoring and logging
---
## Success Metrics
### Technical Metrics
- API Response Time: < 500ms (p95)
- Frontend Load Time: < 2s
- Test Coverage: > 80%
- Uptime: > 99.9%
- Error Rate: < 0.1%
### User Metrics
- Project Creation Success: > 95%
- Episode Generation Quality: > 85%
- User Satisfaction: > 4.5/5
- Daily Active Users: Track growth
- Feature Adoption: Track usage
---
## Risk Assessment
### High Risk Items
1. **LLM API Stability**
- Mitigation: Implement retry logic, fallback models
- Priority: High
2. **Data Consistency**
- Mitigation: Comprehensive review system
- Priority: High
3. **Performance at Scale**
- Mitigation: Caching, async processing
- Priority: Medium
4. **User Experience Complexity**
- Mitigation: Intuitive UI, onboarding
- Priority: Medium
### Medium Risk Items
1. **Third-party Dependencies**
- Mitigation: Version pinning, regular updates
- Priority: Medium
2. **Security Vulnerabilities**
- Mitigation: Regular audits, penetration testing
- Priority: High
---
## Next Steps (Immediate Actions)
### Week 1-2: Foundation
- [ ] Set up PostgreSQL database
- [ ] Implement data persistence layer
- [ ] Add comprehensive error handling
- [ ] Set up testing framework
- [ ] Create development documentation
### Week 3-4: Memory System
- [ ] Implement MemoryManager
- [ ] Create memory API endpoints
- [ ] Build MemorySystemViewer UI
- [ ] Add memory extraction from episodes
- [ ] Test memory consistency
### Week 5-6: Review System
- [ ] Implement ReviewManager
- [ ] Create review API endpoints
- [ ] Build ReviewConfig UI
- [ ] Build ReviewResults UI
- [ ] Add custom rule builder
- [ ] Test review accuracy
---
## Conclusion
This implementation plan provides a comprehensive roadmap for building the Creative Studio platform. The key focus areas are:
1. **Memory System**: Ensure multi-episode consistency
2. **Review System**: Maintain quality standards
3. **Enhanced Execution**: Provide flexible creation modes
4. **Skill Marketplace**: Enable skill sharing
5. **User Experience**: Intuitive, powerful interface
The current implementation has a solid foundation with Skills CRUD, basic Agent framework, and project management. The next phases focus on adding the missing critical features while maintaining code quality and user experience.
**Estimated Total Timeline**: 12 weeks for full MVP
**Team Size**: 2-3 developers recommended
**Budget**: Consider API costs, infrastructure, and development resources
---
**Document Version**: 1.0
**Last Updated**: 2024-01-24
**Next Review**: 2024-02-01