"""智能编剧系统工作流图定义 该模块定义了智能编剧系统的完整工作流程图,包括各个节点和边的连接关系。 """ from typing import TypedDict, Annotated, Dict, Any, List, TypedDict, Optional from langgraph.graph.state import RunnableConfig from agent.scheduler import SchedulerAgent from agent.build_bible import BuildBibleAgent from agent.episode_create import EpisodeCreateAgent from agent.script_analysis import ScriptAnalysisAgent from agent.strategic_planning import StrategicPlanningAgent from langchain_core.messages import AnyMessage,HumanMessage from langgraph.graph import StateGraph, START, END from utils.logger import get_logger import operator import json import config from tools.database.mongo import client # type: ignore from langgraph.checkpoint.mongodb import MongoDBSaver logger = get_logger(__name__) # 定义一个简单的替换函数 def replace_value(old_val, new_val): """一个简单的合并函数,用于替换旧值""" return new_val # 状态类型定义 class InputState(TypedDict): """工作流输入状态""" input_data: Annotated[list[AnyMessage], operator.add] from_type: Annotated[str, replace_value] session_id: Annotated[str, replace_value] class OutputState(TypedDict): """工作流输出状态""" session_id: Annotated[str, replace_value] status: Annotated[str, replace_value] error: Annotated[str, replace_value] agent_message: Annotated[str, replace_value] # 智能体回复 class NodeInfo(TypedDict): """工作流信息""" step: Annotated[str, replace_value] # 阶段名称 [wait_for_input,script_analysis,strategic_planning,build_bible,episode_create_loop, finish] status: Annotated[str, replace_value] # 当前阶段的状态 [waiting,running,failed,completed] reason: Annotated[str, replace_value] # 失败原因 retry_count: Annotated[int, replace_value] # 重试次数 from_type: Annotated[str, replace_value] # 本次请求来着哪里 [user, agent] class ScriptwriterState(TypedDict, total=False): """智能编剧工作流整体状态""" # 输入数据 input_data: Annotated[list[HumanMessage], operator.add] session_id: Annotated[str, replace_value] from_type: Annotated[str, replace_value] # 本次请求来着哪里 [user, agent] # 节点间状态 next_node: Annotated[str, replace_value] # 下一个节点 workflow_step: Annotated[str, replace_value] # 阶段名称 [wait_for_input,script_analysis,strategic_planning,build_bible,episode_create_loop, finish] workflow_status: Annotated[str, replace_value] # 当前阶段的状态 [waiting,running,failed,completed] workflow_reason: Annotated[str, replace_value] # 失败原因 workflow_retry_count: Annotated[int, replace_value] # 重试次数 # 中间状态 agent_script_id: Annotated[str, replace_value] # 剧本ID 包括原文 agent_plan: Annotated[Dict[str, Any], replace_value] #剧本计划 script_bible: Annotated[Dict[str, Any], replace_value] #剧本圣经 episode_list: Annotated[List, replace_value] # 章节列表 完成状态、产出章节id # 输出数据 agent_message: Annotated[str, replace_value] # 智能体回复 status: Annotated[str, replace_value] error: Annotated[str, replace_value] class ScriptwriterGraph: """智能编剧工作流图类 管理智能编剧系统的完整工作流程,包括: - 剧本接收 - 诊断分析 - 策略制定 - 剧本圣经构建 - 剧本创作 - 迭代调整 """ def __init__(self): """初始化工作流图""" self.graph = None self.memory = MongoDBSaver(client, db_name=config.MONGO_CHECKPOINT_DB_NAME) self._build_graph() def node_router(self, state: ScriptwriterState) -> str: """节点路由函数""" print(f'node_router state {state}') next_node = state.get("next_node", 'pause_node') # 修复:当 next_node 为空字符串时,设置默认值 if not next_node: next_node = 'pause_node' # 设置为暂停节点 print(f'node_router next_node {next_node}') return next_node def _build_graph(self) -> None: """构建工作流图""" try: # 创建智能体 print("创建智能体") # 调度智能体 self.schedulerAgent = SchedulerAgent( tools=[], SchedulerList=[ { "name": "scheduler_node", "desc": "调度智能体节点", }, { "name": "script_analysis_node", "desc": "原始剧本分析节点", }, { "name": "strategic_planning_node", "desc": "确立改编目标节点", }, { "name": "build_bible_node", "desc": "剧本圣经构建节点", }, { "name": "episode_create_node", "desc": "单集创作节点", }, { "name": "end_node", "desc": "结束节点,任务失败终止时使用,结束后整个工作流将停止" } ] ) self.scriptAnalysisAgent = ScriptAnalysisAgent( tools=[], SchedulerList=[ { "name": "scheduler_node", "desc": "调度智能体节点", } ] ) self.strategicPlanningAgent = StrategicPlanningAgent( tools=[], SchedulerList=[ { "name": "scheduler_node", "desc": "调度智能体节点", } ] ) self.buildBibleAgent = BuildBibleAgent( tools=[], SchedulerList=[ { "name": "scheduler_node", "desc": "调度智能体节点", } ] ) self.episodeCreate = EpisodeCreateAgent( tools=[], SchedulerList=[ { "name": "scheduler_node", "desc": "调度智能体节点", } ] ) # 创建状态图 logger.info("创建状态图") workflow = StateGraph(ScriptwriterState, input_schema=InputState, output_schema=OutputState) # 添加节点 logger.info("添加节点") workflow.add_node("scheduler_node", self.scheduler_node) workflow.add_node("script_analysis_node", self.script_analysis_node) workflow.add_node("strategic_planning_node", self.strategic_planning_node) workflow.add_node("build_bible_node", self.build_bible_node) workflow.add_node("episode_create_node", self.episode_create_node) workflow.add_node("end_node", self.end_node) workflow.add_node("pause_node", self.pause_node) # 添加边 workflow.set_entry_point("scheduler_node") # 所有功能节点执行完成后,都返回给调度节点 workflow.add_edge("script_analysis_node", "scheduler_node") workflow.add_edge("strategic_planning_node", "scheduler_node") workflow.add_edge("build_bible_node", "scheduler_node") workflow.add_edge("episode_create_node", "scheduler_node") # 添加条件边:由调度节点决定下一个路由 workflow.add_conditional_edges( "scheduler_node", self.node_router, { "script_analysis_node": "script_analysis_node", "strategic_planning_node": "strategic_planning_node", "build_bible_node": "build_bible_node", "episode_create_node": "episode_create_node", # 用户确认和暂停逻辑在这里处理,不需要单独的边 "end_node": "end_node", "pause_node": "pause_node", } ) workflow.add_edge("end_node", END) # 编译图 self.graph = workflow.compile(checkpointer=self.memory) logger.info("工作流图构建完成") except Exception as e: logger.error(f"构建工作流图失败: {e}") raise # --- 定义图中的节点 --- async def scheduler_node(self, state: ScriptwriterState)-> ScriptwriterState: """调度节点""" try: session_id = state.get("session_id", "") from_type = state.get("from_type", "") input_data = state.get("input_data", []) logger.info(f"调度节点 {session_id} 输入参数: {input_data} from_type:{from_type}") reslut = await self.schedulerAgent.ainvoke(state) ai_message_str = reslut['messages'][-1].content ai_message = json.loads(ai_message_str) logger.info(f"调度节点结果: {ai_message}") step:str = ai_message.get('step', '') status:str = ai_message.get('status', '') next_agent:str = ai_message.get('agent', '') return_message:str = ai_message.get('message', '') retry_count:int = int(ai_message.get('retry_count', '0')) next_node:str = ai_message.get('node', 'pause_node') if next_node == 'scheduler_node': # 返回自身 代表暂停 print(f"调度节点 暂停等待") return { "agent_message": return_message, } else: return { "next_node":next_node, "workflow_step":step, "workflow_status":status, # "workflow_reason":return_message, "workflow_retry_count":retry_count, "agent_message":return_message, } except Exception as e: return { "next_node":'end_node', "agent_message": "执行失败", "error": str(e) or '系统错误,工作流已终止', 'status':'failed', } async def script_analysis_node(self, state: ScriptwriterState)-> ScriptwriterState: """第二步:诊断分析与资产评估""" print("\n--- 正在进行诊断分析 ---") session_id = state.get("session_id", "") print(f"报告已生成: TEST") return {} async def confirm_analysis_node(self, state: ScriptwriterState)-> ScriptwriterState: """用户确认分析报告节点""" print("\n等待用户确认分析报告...") return {} async def strategic_planning_node(self, state: ScriptwriterState)-> ScriptwriterState: """第三步:确立改编目标与战略蓝图""" print("\n--- 正在制定战略蓝图 ---") print(f"战略蓝图已生成: TEST") return {} async def build_bible_node(self, state: ScriptwriterState)-> ScriptwriterState: """第四步:确立改编目标与战略蓝图""" print("\n--- 正在制定战略蓝图 ---") print(f"战略蓝图已生成: TEST") return {} async def episode_create_node(self, state: ScriptwriterState)-> ScriptwriterState: """第五步:动态创作与闭环校验(循环主体)""" num_episodes = 3 # 假设每次创作3集 episode_list = [] return {"episode_list": episode_list} async def pause_node(self, state: ScriptwriterState)-> ScriptwriterState: """ 暂停节点 处理并完成所有数据状态 """ print(f"langgraph 暂停等待") return { "session_id": state.get("session_id", ""), "status": state.get('status', ''), "error": state.get('error', ''), "agent_message": state.get('agent_message', '') } async def end_node(self, state: ScriptwriterState)-> OutputState: """ 结束节点 处理并完成所有数据状态 """ print(f"langgraph 所有任务完成") return { "session_id": state.get("session_id", ""), "status": state.get('status', ''), "error": state.get('error', ''), "agent_message": state.get('agent_message', ''), } async def run(self, session_id: str, input_data: list[AnyMessage], thread_id: str|None = None) -> OutputState: """运行工作流 Args: session_id: 会话ID input_data: 输入数据 thread_id: 线程ID Returns: 工作流执行结果 """ try: logger.info("开始运行智能编剧工作流") # 配置包含线程 ID config:RunnableConfig = {"configurable": {"thread_id": thread_id}} # 初始化状态 initial_state: InputState = { 'input_data': input_data, 'session_id': session_id, 'from_type': 'user', } # 运行工作流 if self.graph is None: raise RuntimeError("工作流图未正确初始化") result = await self.graph.ainvoke( initial_state, config, # stream_mode='values' ) # logger.info(f"工作流执行结果: {result}") if not result: raise ValueError("工作流执行结果为空") # 构造输出状态 output_result: OutputState = { 'session_id': result.get('session_id', ''), 'status': result.get('status', ''), 'error': result.get('error', ''), 'agent_message': result.get('agent_message', ''), } logger.info("智能编剧工作流运行完成") return output_result except Exception as e: logger.error(f"运行工作流失败: {e}") import traceback traceback.print_exc() raise async def get_checkpoint_history(self, thread_id: str): """获取检查点历史""" config:RunnableConfig = {"configurable": {"thread_id": thread_id}} try: history_generator = self.memory.list(config, limit=10) print("正在获取检查点历史...") # 使用列表推导式或 for 循环来收集所有检查点 history = list(history_generator) print(f"找到 {len(history)} 个检查点:") for i, checkpoint_tuple in enumerate(history): # checkpoint_tuple 包含 config, checkpoint, metadata 等属性 # print(f" - ID: {checkpoint_tuple}") checkpoint_data = checkpoint_tuple.checkpoint metadata = checkpoint_tuple.metadata print(f"检查点 {i+1}:") print(f" - ID: {checkpoint_data.get('id', 'N/A')}") print(f" - 状态: {checkpoint_data.get('channel_values', {})}") print(f" - 元数据: {metadata}") print("-" * 50) except Exception as e: print(f"获取历史记录时出错: {e}") def resume_from_checkpoint(self, thread_id: str, checkpoint_id: str): """从检查点恢复执行""" config:RunnableConfig = {"configurable": {"thread_id": thread_id}} if checkpoint_id: config["configurable"]["checkpoint_id"] = checkpoint_id try: # 获取 CheckpointTuple 对象 checkpoint_tuple = self.memory.get_tuple(config) if checkpoint_tuple: # 直接通过属性访问,而不是解包 checkpoint_data = checkpoint_tuple.checkpoint metadata = checkpoint_tuple.metadata print(f"从检查点恢复:") print(f" - 检查点 ID: {checkpoint_data.get('id', 'N/A')}") print(f" - 状态: {checkpoint_data.get('channel_values', {})}") print(f" - 元数据: {metadata}") return checkpoint_data.get('channel_values', {}) else: print(f"未找到线程 {thread_id} 的检查点") return None except Exception as e: print(f"恢复检查点时出错: {e}") return None def get_graph_visualization(self) -> str: """获取工作流图的可视化表示 Returns: 图的文本表示 """ try: if self.graph: with open('graph_visualization.png', 'wb') as f: f.write(self.graph.get_graph().draw_mermaid_png()) print("图片已保存为 graph_visualization.png") return "工作流图未初始化" except Exception as e: logger.error(f"获取图可视化失败: {e}") return f"获取图可视化失败: {e}" if __name__ == "__main__": import asyncio async def main(): print("测试") graph = ScriptwriterGraph() print("创建完成") # graph.get_graph_visualization() # print("可视化完成") # 运行工作流 session_id = "68c2c2915e5746343301ef71" result = await graph.run( session_id, [HumanMessage(content="你好编剧,我想写小说!")], session_id ) print(f"最终结果: {result}") asyncio.run(main())