调度智能体 记忆存储

This commit is contained in:
jonathang4 2025-09-11 20:44:14 +08:00
parent e5f66e0d24
commit 750af43ff3
8 changed files with 239 additions and 96 deletions

View File

@ -35,7 +35,7 @@ DefaultAgentPrompt = f"""
def create_agent_prompt(prompt, SchedulerList): def create_agent_prompt(prompt, SchedulerList):
"""创建代理提示词的辅助函数""" """创建代理提示词的辅助函数"""
if not SchedulerList or len(SchedulerList) == 0: return prompt if not SchedulerList or len(SchedulerList) == 0: return prompt
node_list = [f"{node.name}:{node.desc}" for node in SchedulerList] node_list = [f"{node['name']}:{node['desc']}" for node in SchedulerList]
return f""" return f"""
{prompt} \n {prompt} \n
下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回 下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回

View File

@ -35,7 +35,7 @@ DefaultAgentPrompt = f"""
def create_agent_prompt(prompt, SchedulerList): def create_agent_prompt(prompt, SchedulerList):
"""创建代理提示词的辅助函数""" """创建代理提示词的辅助函数"""
if not SchedulerList or len(SchedulerList) == 0: return prompt if not SchedulerList or len(SchedulerList) == 0: return prompt
node_list = [f"{node.name}:{node.desc}" for node in SchedulerList] node_list = [f"{node['name']}:{node['desc']}" for node in SchedulerList]
return f""" return f"""
{prompt} \n {prompt} \n
下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回 下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回

View File

@ -97,6 +97,7 @@ DefaultAgentPrompt = f"""
"status": "当前阶段的状态",//取值范围在上述 status的描述中 不可写其他值 "status": "当前阶段的状态",//取值范围在上述 status的描述中 不可写其他值
"agent":'',//分析后得出由哪个智能体继续任务此处为智能体名称如果需要继续与用户交互或仅需要回复用户则为空字符串 "agent":'',//分析后得出由哪个智能体继续任务此处为智能体名称如果需要继续与用户交互或仅需要回复用户则为空字符串
"message":'',//回复给用户的内容 "message":'',//回复给用户的内容
"retry_count":0,//重试次数
"node":'',//下一个节点名称 "node":'',//下一个节点名称
}} }}
@ -105,7 +106,7 @@ DefaultAgentPrompt = f"""
def create_agent_prompt(prompt, SchedulerList): def create_agent_prompt(prompt, SchedulerList):
"""创建代理提示词的辅助函数""" """创建代理提示词的辅助函数"""
if not SchedulerList or len(SchedulerList) == 0: return prompt if not SchedulerList or len(SchedulerList) == 0: return prompt
node_list = [f"{node.name}:{node.desc}" for node in SchedulerList] node_list = [f"{node['name']}:{node['desc']}" for node in SchedulerList]
return f""" return f"""
{prompt} \n {prompt} \n
下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回 下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回

View File

@ -35,7 +35,7 @@ DefaultAgentPrompt = f"""
def create_agent_prompt(prompt, SchedulerList): def create_agent_prompt(prompt, SchedulerList):
"""创建代理提示词的辅助函数""" """创建代理提示词的辅助函数"""
if not SchedulerList or len(SchedulerList) == 0: return prompt if not SchedulerList or len(SchedulerList) == 0: return prompt
node_list = [f"{node.name}:{node.desc}" for node in SchedulerList] node_list = [f"{node['name']}:{node['desc']}" for node in SchedulerList]
return f""" return f"""
{prompt} \n {prompt} \n
下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回 下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回

View File

@ -35,7 +35,7 @@ DefaultAgentPrompt = f"""
def create_agent_prompt(prompt, SchedulerList): def create_agent_prompt(prompt, SchedulerList):
"""创建代理提示词的辅助函数""" """创建代理提示词的辅助函数"""
if not SchedulerList or len(SchedulerList) == 0: return prompt if not SchedulerList or len(SchedulerList) == 0: return prompt
node_list = [f"{node.name}:{node.desc}" for node in SchedulerList] node_list = [f"{node['name']}:{node['desc']}" for node in SchedulerList]
return f""" return f"""
{prompt} \n {prompt} \n
下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回 下面返回数据中node字段的取值范围列表([{{名称:描述}}])请根据你的分析结果选择一个节点名称返回

BIN
doc/节点结构图.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

View File

@ -4,15 +4,23 @@
""" """
from typing import TypedDict, Annotated, Dict, Any, List, TypedDict, Optional from typing import TypedDict, Annotated, Dict, Any, List, TypedDict, Optional
from langgraph.graph.state import RunnableConfig
from agent.scheduler import SchedulerAgent from agent.scheduler import SchedulerAgent
from agent.build_bible import BuildBibleAgent from agent.build_bible import BuildBibleAgent
from agent.episode_create import EpisodeCreateAgent from agent.episode_create import EpisodeCreateAgent
from agent.script_analysis import ScriptAnalysisAgent from agent.script_analysis import ScriptAnalysisAgent
from agent.strategic_planning import StrategicPlanningAgent from agent.strategic_planning import StrategicPlanningAgent
from langchain_core.messages import AnyMessage,HumanMessage
from langgraph.graph import StateGraph, START, END from langgraph.graph import StateGraph, START, END
from utils.logger import get_logger from utils.logger import get_logger
import operator import operator
import json
import config
from tools.database.mongo import client # type: ignore
from langgraph.checkpoint.mongodb import MongoDBSaver
logger = get_logger(__name__) logger = get_logger(__name__)
@ -24,7 +32,8 @@ def replace_value(old_val, new_val):
# 状态类型定义 # 状态类型定义
class InputState(TypedDict): class InputState(TypedDict):
"""工作流输入状态""" """工作流输入状态"""
input_data: Annotated[Dict[str, Any], operator.add] input_data: Annotated[list[AnyMessage], operator.add]
from_type: Annotated[str, replace_value]
session_id: Annotated[str, replace_value] session_id: Annotated[str, replace_value]
class OutputState(TypedDict): class OutputState(TypedDict):
@ -32,6 +41,7 @@ class OutputState(TypedDict):
session_id: Annotated[str, replace_value] session_id: Annotated[str, replace_value]
status: Annotated[str, replace_value] status: Annotated[str, replace_value]
error: Annotated[str, replace_value] error: Annotated[str, replace_value]
agent_message: Annotated[str, replace_value] # 智能体回复
class NodeInfo(TypedDict): class NodeInfo(TypedDict):
"""工作流信息""" """工作流信息"""
@ -45,12 +55,17 @@ class NodeInfo(TypedDict):
class ScriptwriterState(TypedDict, total=False): class ScriptwriterState(TypedDict, total=False):
"""智能编剧工作流整体状态""" """智能编剧工作流整体状态"""
# 输入数据 # 输入数据
input_data: Annotated[Dict[str, Any], operator.add] input_data: Annotated[list[HumanMessage], operator.add]
session_id: Annotated[str, replace_value] session_id: Annotated[str, replace_value]
from_type: Annotated[str, replace_value] # 本次请求来着哪里 [user, agent]
# 节点间状态 # 节点间状态
node_info: NodeInfo next_node: Annotated[str, replace_value] # 下一个节点
workflow_step: Annotated[str, replace_value] # 阶段名称 [wait_for_input,script_analysis,strategic_planning,build_bible,episode_create_loop, finish]
workflow_status: Annotated[str, replace_value] # 当前阶段的状态 [waiting,running,failed,completed]
workflow_reason: Annotated[str, replace_value] # 失败原因
workflow_retry_count: Annotated[int, replace_value] # 重试次数
# 中间状态 # 中间状态
agent_script_id: Annotated[str, replace_value] # 剧本ID 包括原文 agent_script_id: Annotated[str, replace_value] # 剧本ID 包括原文
agent_plan: Annotated[Dict[str, Any], replace_value] #剧本计划 agent_plan: Annotated[Dict[str, Any], replace_value] #剧本计划
@ -58,6 +73,7 @@ class ScriptwriterState(TypedDict, total=False):
episode_list: Annotated[List, replace_value] # 章节列表 完成状态、产出章节id episode_list: Annotated[List, replace_value] # 章节列表 完成状态、产出章节id
# 输出数据 # 输出数据
agent_message: Annotated[str, replace_value] # 智能体回复
status: Annotated[str, replace_value] status: Annotated[str, replace_value]
error: Annotated[str, replace_value] error: Annotated[str, replace_value]
@ -76,77 +92,105 @@ class ScriptwriterGraph:
def __init__(self): def __init__(self):
"""初始化工作流图""" """初始化工作流图"""
self.graph = None self.graph = None
self.memory = MongoDBSaver(client, db_name=config.MONGO_CHECKPOINT_DB_NAME)
self._build_graph() self._build_graph()
def node_router(self, state: ScriptwriterState) -> str: def node_router(self, state: ScriptwriterState) -> str:
next_node = state.get("node", '') """节点路由函数"""
if next_node: print(f'node_router state {state}')
return next_node next_node = state.get("next_node", 'pause_node')
else: # 修复:当 next_node 为空字符串时,设置默认值
return END if not next_node:
next_node = 'pause_node' # 设置为暂停节点
print(f'node_router next_node {next_node}')
return next_node
def _build_graph(self) -> None: def _build_graph(self) -> None:
"""构建工作流图""" """构建工作流图"""
try: try:
# 创建智能体 # 创建智能体
print("创建智能体")
# 调度智能体 # 调度智能体
schedulerAgent = SchedulerAgent( self.schedulerAgent = SchedulerAgent(
tools=[], tools=[],
SchedulerList=[ SchedulerList=[
{ {
"scheduler_node": "调度智能体节点", "name": "scheduler_node",
"script_analysis_node": "原始剧本分析节点", "desc": "调度智能体节点",
"strategic_planning_node": "确立改编目标节点", },
"build_bible_node": "剧本圣经构建节点", {
"episode_create_node": "单集创作节点", "name": "script_analysis_node",
"end_node": "结束节点,任务失败终止时使用,结束后整个工作流将停止" "desc": "原始剧本分析节点",
},
{
"name": "strategic_planning_node",
"desc": "确立改编目标节点",
},
{
"name": "build_bible_node",
"desc": "剧本圣经构建节点",
},
{
"name": "episode_create_node",
"desc": "单集创作节点",
},
{
"name": "end_node",
"desc": "结束节点,任务失败终止时使用,结束后整个工作流将停止"
} }
] ]
) )
scriptAnalysisAgent = ScriptAnalysisAgent( self.scriptAnalysisAgent = ScriptAnalysisAgent(
tools=[], tools=[],
SchedulerList=[ SchedulerList=[
{ {
"scheduler_node": "调度智能体节点", "name": "scheduler_node",
"desc": "调度智能体节点",
} }
] ]
) )
strategicPlanningAgent = StrategicPlanningAgent( self.strategicPlanningAgent = StrategicPlanningAgent(
tools=[], tools=[],
SchedulerList=[ SchedulerList=[
{ {
"scheduler_node": "调度智能体节点", "name": "scheduler_node",
"desc": "调度智能体节点",
} }
] ]
) )
buildBibleAgent = BuildBibleAgent( self.buildBibleAgent = BuildBibleAgent(
tools=[], tools=[],
SchedulerList=[ SchedulerList=[
{ {
"scheduler_node": "调度智能体节点", "name": "scheduler_node",
"desc": "调度智能体节点",
} }
] ]
) )
episodeCreate = EpisodeCreateAgent( self.episodeCreate = EpisodeCreateAgent(
tools=[], tools=[],
SchedulerList=[ SchedulerList=[
{ {
"scheduler_node": "调度智能体节点", "name": "scheduler_node",
"desc": "调度智能体节点",
} }
] ]
) )
# 创建状态图 # 创建状态图
logger.info("创建状态图")
workflow = StateGraph(ScriptwriterState, input_schema=InputState, output_schema=OutputState) workflow = StateGraph(ScriptwriterState, input_schema=InputState, output_schema=OutputState)
# 添加节点 # 添加节点
logger.info("添加节点")
workflow.add_node("scheduler_node", self.scheduler_node) workflow.add_node("scheduler_node", self.scheduler_node)
workflow.add_node("script_analysis_node", self.script_analysis_node) workflow.add_node("script_analysis_node", self.script_analysis_node)
workflow.add_node("strategic_planning_node", self.strategic_planning_node) workflow.add_node("strategic_planning_node", self.strategic_planning_node)
workflow.add_node("build_bible_node", self.build_bible_node) workflow.add_node("build_bible_node", self.build_bible_node)
workflow.add_node("episode_create_node", self.episode_create_node) workflow.add_node("episode_create_node", self.episode_create_node)
workflow.add_node("end_node", self.end_node) workflow.add_node("end_node", self.end_node)
workflow.add_node("pause_node", self.pause_node)
# 添加边 # 添加边
workflow.set_entry_point("scheduler_node") workflow.set_entry_point("scheduler_node")
@ -167,13 +211,14 @@ class ScriptwriterGraph:
"episode_create_node": "episode_create_node", "episode_create_node": "episode_create_node",
# 用户确认和暂停逻辑在这里处理,不需要单独的边 # 用户确认和暂停逻辑在这里处理,不需要单独的边
"end_node": "end_node", "end_node": "end_node",
"pause_node": "pause_node",
} }
) )
workflow.add_edge("end_node", END) workflow.add_edge("end_node", END)
# 编译图 # 编译图
self.graph = workflow.compile() self.graph = workflow.compile(checkpointer=self.memory)
logger.info("工作流图构建完成") logger.info("工作流图构建完成")
except Exception as e: except Exception as e:
@ -182,10 +227,44 @@ class ScriptwriterGraph:
# --- 定义图中的节点 --- # --- 定义图中的节点 ---
async def scheduler_node(self, state: ScriptwriterState)-> ScriptwriterState: async def scheduler_node(self, state: ScriptwriterState)-> ScriptwriterState:
"""第一步:初步沟通,请求剧本""" """调度节点"""
session_id = state.get("session_id", "") try:
session_id = state.get("session_id", "")
return {} from_type = state.get("from_type", "")
input_data = state.get("input_data", [])
logger.info(f"调度节点 {session_id} 输入参数: {input_data} from_type:{from_type}")
reslut = await self.schedulerAgent.ainvoke(state)
ai_message_str = reslut['messages'][-1].content
ai_message = json.loads(ai_message_str)
logger.info(f"调度节点结果: {ai_message}")
step:str = ai_message.get('step', '')
status:str = ai_message.get('status', '')
next_agent:str = ai_message.get('agent', '')
return_message:str = ai_message.get('message', '')
retry_count:int = int(ai_message.get('retry_count', '0'))
next_node:str = ai_message.get('node', 'pause_node')
if next_node == 'scheduler_node':
# 返回自身 代表暂停
print(f"调度节点 暂停等待")
return {
"agent_message": return_message,
}
else:
return {
"next_node":next_node,
"workflow_step":step,
"workflow_status":status,
# "workflow_reason":return_message,
"workflow_retry_count":retry_count,
"agent_message":return_message,
}
except Exception as e:
return {
"next_node":'end_node',
"agent_message": "执行失败",
"error": str(e) or '系统错误,工作流已终止',
'status':'failed',
}
async def script_analysis_node(self, state: ScriptwriterState)-> ScriptwriterState: async def script_analysis_node(self, state: ScriptwriterState)-> ScriptwriterState:
"""第二步:诊断分析与资产评估""" """第二步:诊断分析与资产评估"""
@ -218,20 +297,32 @@ class ScriptwriterGraph:
episode_list = [] episode_list = []
return {"episode_list": episode_list} return {"episode_list": episode_list}
async def pause_node(self, state: ScriptwriterState)-> ScriptwriterState:
""" 暂停节点 处理并完成所有数据状态 """
print(f"langgraph 暂停等待")
return {
"session_id": state.get("session_id", ""),
"status": state.get('status', ''),
"error": state.get('error', ''),
"agent_message": state.get('agent_message', '')
}
async def end_node(self, state: ScriptwriterState)-> OutputState: async def end_node(self, state: ScriptwriterState)-> OutputState:
""" 结束节点 处理并完成所有数据状态 """ """ 结束节点 处理并完成所有数据状态 """
print(f"langgraph 所有任务完成") print(f"langgraph 所有任务完成")
return { return {
"session_id": state.get("session_id", ""), "session_id": state.get("session_id", ""),
"status": "", "status": state.get('status', ''),
"error": "", "error": state.get('error', ''),
"agent_message": state.get('agent_message', ''),
} }
async def run(self, input_data: Dict[str, Any]) -> OutputState: async def run(self, session_id: str, input_data: list[AnyMessage], thread_id: str|None = None) -> OutputState:
"""运行工作流 """运行工作流
Args: Args:
session_id: 会话ID
input_data: 输入数据 input_data: 输入数据
thread_id: 线程ID
Returns: Returns:
工作流执行结果 工作流执行结果
@ -239,44 +330,102 @@ class ScriptwriterGraph:
try: try:
logger.info("开始运行智能编剧工作流") logger.info("开始运行智能编剧工作流")
# # 初始化状态 # 配置包含线程 ID
# initial_state: InputState = { config:RunnableConfig = {"configurable": {"thread_id": thread_id}}
# 'input_data': input_data, # 初始化状态
# 'session_id': input_data.get('session_id', ''), initial_state: InputState = {
# 'max_iterations': input_data.get('max_iterations', 3), 'input_data': input_data,
# 'batch_info': input_data.get('batch_info', {}) 'session_id': session_id,
# } 'from_type': 'user',
}
# # 运行工作流 # 运行工作流
# if self.graph is None: if self.graph is None:
# raise RuntimeError("工作流图未正确初始化") raise RuntimeError("工作流图未正确初始化")
# result = await self.graph.ainvoke(initial_state) result = await self.graph.ainvoke(
initial_state,
config,
# stream_mode='values'
)
# logger.info(f"工作流执行结果: {result}") # logger.info(f"工作流执行结果: {result}")
# if not result: if not result:
# raise ValueError("工作流执行结果为空") raise ValueError("工作流执行结果为空")
# # 保存到记忆
# self.memory.save_workflow_result(result)
# # 构造输出状态 # 构造输出状态
# output_result: OutputState = { output_result: OutputState = {
# 'script': result.get('script'), 'session_id': result.get('session_id', ''),
# 'adjustment': result.get('adjustment'), 'status': result.get('status', ''),
# 'error': result.get('error'), 'error': result.get('error', ''),
# 'iteration_count': result.get('iteration_count', 0) 'agent_message': result.get('agent_message', ''),
# }
output_result:OutputState = {
'session_id': "",
'status': 'completed',
'error': '',
} }
logger.info("智能编剧工作流运行完成") logger.info("智能编剧工作流运行完成")
return output_result return output_result
except Exception as e: except Exception as e:
logger.error(f"运行工作流失败: {e}") logger.error(f"运行工作流失败: {e}")
import traceback
traceback.print_exc()
raise raise
async def get_checkpoint_history(self, thread_id: str):
"""获取检查点历史"""
config:RunnableConfig = {"configurable": {"thread_id": thread_id}}
try:
history_generator = self.memory.list(config, limit=10)
print("正在获取检查点历史...")
# 使用列表推导式或 for 循环来收集所有检查点
history = list(history_generator)
print(f"找到 {len(history)} 个检查点:")
for i, checkpoint_tuple in enumerate(history):
# checkpoint_tuple 包含 config, checkpoint, metadata 等属性
# print(f" - ID: {checkpoint_tuple}")
checkpoint_data = checkpoint_tuple.checkpoint
metadata = checkpoint_tuple.metadata
print(f"检查点 {i+1}:")
print(f" - ID: {checkpoint_data.get('id', 'N/A')}")
print(f" - 状态: {checkpoint_data.get('channel_values', {})}")
print(f" - 元数据: {metadata}")
print("-" * 50)
except Exception as e:
print(f"获取历史记录时出错: {e}")
def resume_from_checkpoint(self, thread_id: str, checkpoint_id: str):
"""从检查点恢复执行"""
config:RunnableConfig = {"configurable": {"thread_id": thread_id}}
if checkpoint_id:
config["configurable"]["checkpoint_id"] = checkpoint_id
try:
# 获取 CheckpointTuple 对象
checkpoint_tuple = self.memory.get_tuple(config)
if checkpoint_tuple:
# 直接通过属性访问,而不是解包
checkpoint_data = checkpoint_tuple.checkpoint
metadata = checkpoint_tuple.metadata
print(f"从检查点恢复:")
print(f" - 检查点 ID: {checkpoint_data.get('id', 'N/A')}")
print(f" - 状态: {checkpoint_data.get('channel_values', {})}")
print(f" - 元数据: {metadata}")
return checkpoint_data.get('channel_values', {})
else:
print(f"未找到线程 {thread_id} 的检查点")
return None
except Exception as e:
print(f"恢复检查点时出错: {e}")
return None
def get_graph_visualization(self) -> str: def get_graph_visualization(self) -> str:
"""获取工作流图的可视化表示 """获取工作流图的可视化表示
@ -285,8 +434,31 @@ class ScriptwriterGraph:
""" """
try: try:
if self.graph: if self.graph:
return str(self.graph) with open('graph_visualization.png', 'wb') as f:
f.write(self.graph.get_graph().draw_mermaid_png())
print("图片已保存为 graph_visualization.png")
return "工作流图未初始化" return "工作流图未初始化"
except Exception as e: except Exception as e:
logger.error(f"获取图可视化失败: {e}") logger.error(f"获取图可视化失败: {e}")
return f"获取图可视化失败: {e}" return f"获取图可视化失败: {e}"
if __name__ == "__main__":
import asyncio
async def main():
print("测试")
graph = ScriptwriterGraph()
print("创建完成")
# graph.get_graph_visualization()
# print("可视化完成")
# 运行工作流
session_id = "68c2c2915e5746343301ef71"
result = await graph.run(
session_id,
[HumanMessage(content="你好编剧,我想写小说!")],
session_id
)
print(f"最终结果: {result}")
asyncio.run(main())

View File

@ -1,30 +0,0 @@
"""工作流记忆管理模块
该模块负责管理智能编剧系统工作流的记忆存储和检索
"""
import sys
import os
from typing import Dict, Any, List, Optional
from datetime import datetime
import json
from database import client # type: ignore
from langgraph.checkpoint.mongodb import MongoDBSaver
# 添加项目根目录到路径
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
from agentgraph.utils.logger import get_logger
logger = get_logger(__name__)
DB_NAME = "langgraph_memory_db"
class WorkflowMemory:
"""工作流记忆管理类
负责管理工作流执行过程中的状态存储检索和历史记录
"""
def __init__(self):
"""初始化工作流记忆管理器"""
self.memory = MongoDBSaver(client, db_name=DB_NAME)