Compare commits

..

No commits in common. "99ae97162c372aad15b05a49c86074dafc7a1686" and "79c991ee642519923e0d9d1435e78b568fcd4bb0" have entirely different histories.

12 changed files with 680 additions and 1215 deletions

3
.gitignore vendored
View File

@ -36,9 +36,6 @@ scripts/config/chrome_profile/
drivers/*
!drivers/chromedriver.exe
# Rankings config directory
handlers/Rankings/config/
# Environment variables
.env
.venv

View File

@ -4,33 +4,19 @@
抖音播放量自动抓取定时器 - 跨平台版本
功能
- 每晚自动执行抖音播放量抓取任务
- 数据抓取完成后自动生成各类榜单播放量榜增长榜新晋榜热门趋势榜
- 每晚24:00自动执行抖音播放量抓取任务
- 支持WindowsmacOSLinux
- 自动保存数据到MongoDB
使用方法
- 正常模式python Timer_worker.py启动定时器
- 测试模式python Timer_worker.py --test立即执行一次
- 单次执行python Timer_worker.py --once立即执行一次并退出
- 仅生成榜单python Timer_worker.py --ranking-only仅生成榜单不抓取数据
"""
import schedule
import time
import subprocess
import sys
import os
import logging
import argparse
from pathlib import Path
from datetime import datetime, date
import config
# 添加项目路径到 Python 路径
sys.path.append(os.path.join(os.path.dirname(__file__), 'handlers', 'Rankings'))
from rank_data_scraper import DouyinPlayVVScraper
from datetime import datetime
# 配置日志的函数
def setup_logging():
@ -62,216 +48,43 @@ class DouyinAutoScheduler:
# 设置环境变量,确保自动模式
os.environ['AUTO_CONTINUE'] = '1'
# 直接创建并运行 DouyinPlayVVScraper 实例
scraper = DouyinPlayVVScraper(
start_url="https://www.douyin.com/user/self?showTab=favorite_collection&showSubTab=compilation",
auto_continue=True,
duration_s=60
)
logging.info("📁 开始执行抓取任务...")
scraper.run()
logging.info("✅ 抖音播放量抓取任务执行成功")
# 数据抓取完成后,自动生成当日榜单
self.generate_daily_rankings()
# 构建脚本路径 - 指向Rankings目录中的脚本
script_path = Path(__file__).parent / 'handlers' / 'Rankings' / 'rank_data_scraper.py'
if not script_path.exists():
logging.error(f"❌ 脚本文件不存在: {script_path}")
return
logging.info(f"📁 执行脚本: {script_path}")
# 使用subprocess执行脚本
result = subprocess.run([
sys.executable,
str(script_path),
'--auto',
'--duration', '60'
], capture_output=True, text=True, encoding='utf-8', errors='ignore')
if result.returncode == 0:
logging.info("✅ 抖音播放量抓取任务执行成功")
if result.stdout:
logging.info(f"📄 输出: {result.stdout.strip()}")
else:
logging.error(f"❌ 任务执行失败,返回码: {result.returncode}")
if result.stderr:
logging.error(f"💥 错误信息: {result.stderr.strip()}")
if result.stdout:
logging.info(f"📄 输出: {result.stdout.strip()}")
except Exception as e:
logging.error(f"💥 执行任务时发生异常: {e}")
import traceback
logging.error(f"详细错误信息: {traceback.format_exc()}")
def generate_daily_rankings(self):
"""生成每日榜单数据(基于时间轴对比)"""
try:
from database import db
from datetime import timedelta
# 获取集合
douyin_collection = db['Rankings_list'] # 使用真实抓取的数据
rankings_collection = db['Ranking_storage']
today = date.today()
yesterday = today - timedelta(days=1)
today_str = today.strftime('%Y-%m-%d')
yesterday_str = yesterday.strftime('%Y-%m-%d')
logging.info(f"📅 正在生成 {today_str} 的榜单(对比 {yesterday_str}...")
# 删除当天已有的榜单数据
rankings_collection.delete_many({"date": today_str})
logging.info(f"🗑️ 已清理 {today_str} 的旧榜单数据")
# 获取今天和昨天的榜单数据进行对比
try:
logging.info("🔄 正在生成时间轴对比榜单...")
# 获取今天的数据,按短剧名称去重,只保留播放量最高的
today_videos_raw = list(douyin_collection.find({}).sort("play_vv", -1))
# 按短剧名称去重,每个短剧只保留播放量最高的一条
unique_videos = {}
for video in today_videos_raw:
mix_name = video.get("mix_name", "")
if mix_name and (mix_name not in unique_videos or video.get("play_vv", 0) > unique_videos[mix_name].get("play_vv", 0)):
unique_videos[mix_name] = video
today_videos = list(unique_videos.values())
logging.info(f"📊 今日数据去重后:{len(today_videos)} 个独特短剧(原始数据:{len(today_videos_raw)} 条)")
# 获取昨天的榜单数据(如果存在),取最新的计算结果
yesterday_ranking = rankings_collection.find_one({
"date": yesterday_str,
"type": "comprehensive"
}, sort=[("calculation_sequence", -1)])
yesterday_data = {}
if yesterday_ranking and "data" in yesterday_ranking:
# 将昨天的数据转换为字典,以短剧名称为键
for item in yesterday_ranking["data"]:
title = item.get("title", "")
if title:
yesterday_data[title] = {
"rank": item.get("rank", 0),
"play_vv": item.get("play_vv", 0),
"video_id": item.get("video_id", "")
}
logging.info(f"📊 找到昨天的榜单数据,共 {len(yesterday_data)} 个短剧")
else:
logging.info("📊 未找到昨天的榜单数据,将作为首次生成")
if today_videos:
# 先计算所有视频的播放量差值
videos_with_growth = []
for video in today_videos:
video_id = str(video.get("_id", ""))
current_play_vv = video.get("play_vv", 0)
# 计算与昨天的对比数据
play_vv_change = 0
play_vv_change_rate = 0
is_new = True
mix_name = video.get("mix_name", "")
if mix_name in yesterday_data:
is_new = False
yesterday_play_vv = yesterday_data[mix_name]["play_vv"]
# 计算播放量变化
play_vv_change = current_play_vv - yesterday_play_vv
if yesterday_play_vv > 0:
play_vv_change_rate = round((play_vv_change / yesterday_play_vv) * 100, 2)
# 创建包含增长数据的视频项
video_with_growth = {
"video": video,
"play_vv_change": play_vv_change,
"play_vv_change_rate": play_vv_change_rate,
"is_new": is_new,
"yesterday_data": yesterday_data.get(mix_name, {})
}
videos_with_growth.append(video_with_growth)
# 按播放量差值降序排序(差值越大排名越靠前)
videos_with_growth.sort(key=lambda x: x["play_vv_change"], reverse=True)
comprehensive_ranking = {
"date": today_str,
"type": "comprehensive",
"name": "播放量增长榜单",
"description": f"基于 {yesterday_str}{today_str} 播放量差值排序的榜单(差值越大排名越靠前)",
"comparison_date": yesterday_str,
"total_videos": len(videos_with_growth),
"data": []
}
# 生成排序后的榜单数据
for i, item in enumerate(videos_with_growth, 1):
video = item["video"]
video_id = str(video.get("_id", ""))
current_play_vv = video.get("play_vv", 0)
mix_name = video.get("mix_name", "")
# 计算排名变化(基于昨天的排名)
rank_change = 0
if not item["is_new"] and item["yesterday_data"]:
yesterday_rank = item["yesterday_data"].get("rank", 0)
rank_change = yesterday_rank - i
ranking_item = {
"rank": i,
"title": mix_name,
"play_vv": current_play_vv,
"author": video.get("author", ""),
"video_id": video_id,
"video_url": video.get("video_url", ""),
"cover_image_url": video.get("cover_image_url", ""),
"playcount_str": video.get("playcount", ""),
# 时间轴对比数据
"timeline_data": {
"is_new": item["is_new"],
"rank_change": rank_change,
"play_vv_change": item["play_vv_change"],
"play_vv_change_rate": item["play_vv_change_rate"],
"yesterday_rank": item["yesterday_data"].get("rank", 0) if not item["is_new"] else 0,
"yesterday_play_vv": item["yesterday_data"].get("play_vv", 0) if not item["is_new"] else 0
}
}
comprehensive_ranking["data"].append(ranking_item)
# 为每次计算添加唯一的时间戳,确保数据唯一性
current_timestamp = datetime.now()
comprehensive_ranking["created_at"] = current_timestamp
comprehensive_ranking["calculation_id"] = f"{today_str}_{current_timestamp.strftime('%H%M%S')}"
# 检查今天已有多少次计算
existing_count = rankings_collection.count_documents({
"date": today_str,
"type": "comprehensive"
})
comprehensive_ranking["calculation_sequence"] = existing_count + 1
# 总是插入新的榜单记录,保留所有历史计算数据
rankings_collection.insert_one(comprehensive_ranking)
logging.info(f"📝 创建了新的今日榜单数据(第{existing_count + 1}次计算,包含最新差值)")
logging.info(f"🔖 计算ID: {comprehensive_ranking['calculation_id']}")
# 统计信息
new_count = sum(1 for item in comprehensive_ranking["data"] if item["timeline_data"]["is_new"])
logging.info(f"✅ 时间轴对比榜单生成成功")
logging.info(f"📊 总计 {len(comprehensive_ranking['data'])} 条记录")
logging.info(f"🆕 新上榜 {new_count}")
logging.info(f"🔄 对比基准日期: {yesterday_str}")
return True
else:
logging.warning("⚠️ 榜单生成失败:无今日数据")
return False
except Exception as e:
logging.error(f"💥 生成时间轴对比榜单时发生异常: {e}")
import traceback
logging.error(f"详细错误信息: {traceback.format_exc()}")
return False
except Exception as e:
logging.error(f"💥 生成榜单时发生异常: {e}")
import traceback
logging.error(f"详细错误信息: {traceback.format_exc()}")
def setup_schedule(self):
"""设置定时任务"""
# 从配置文件读取执行时间
scheduler_time = config.SCHEDULER_TIME
schedule.every().day.at(scheduler_time).do(self.run_douyin_scraper)
# 主执行时间每晚24:00午夜
schedule.every().day.at("00:00").do(self.run_douyin_scraper)
logging.info(f"⏰ 定时器已设置:每晚{scheduler_time}执行抖音播放量抓取")
logging.info("⏰ 定时器已设置每晚24:00执行抖音播放量抓取")
def show_next_run(self):
"""显示下次执行时间"""
@ -289,21 +102,18 @@ class DouyinAutoScheduler:
"""测试模式 - 立即执行一次"""
logging.info("🧪 测试模式 - 立即执行抖音播放量抓取任务...")
self.run_douyin_scraper()
def run_ranking_only(self):
"""仅生成榜单(不抓取数据)"""
logging.info("📊 仅生成榜单模式...")
self.generate_daily_rankings()
def start_scheduler(self):
"""启动定时器"""
self.is_running = True
logging.info("🚀 抖音播放量自动抓取定时器已启动")
logging.info(f"⏰ 执行时间:每天{config.SCHEDULER_TIME}执行抖音播放量抓取")
logging.info("⏰ 执行时间每晚24:00")
logging.info("📁 目标脚本rank_data_scraper.py")
logging.info("💾 数据保存MongoDB")
logging.info("⏹️ 按 Ctrl+C 停止定时器")
self.show_next_run()
try:
while self.is_running:
schedule.run_pending()
@ -320,44 +130,25 @@ class DouyinAutoScheduler:
def main():
"""主函数"""
import argparse
try:
parser = argparse.ArgumentParser(description='抖音播放量自动抓取定时器')
parser.add_argument('--test', action='store_true', help='测试模式 - 立即执行一次')
parser.add_argument('--once', action='store_true', help='立即执行一次并退出')
parser.add_argument('--ranking-only', action='store_true', help='仅生成榜单(不抓取数据)')
args = parser.parse_args()
parser = argparse.ArgumentParser(description='抖音播放量自动抓取定时器')
parser.add_argument('--test', action='store_true', help='测试模式 - 立即执行一次')
parser.add_argument('--once', action='store_true', help='立即执行一次并退出')
# 设置日志配置
setup_logging()
print("正在初始化定时器...")
scheduler = DouyinAutoScheduler()
args = parser.parse_args()
if args.test:
print("执行测试模式...")
scheduler.run_test()
elif args.once:
print("执行单次模式...")
scheduler.run_once()
elif args.ranking_only:
print("执行榜单生成模式...")
scheduler.run_ranking_only()
else:
print("启动定时器模式...")
scheduler.setup_schedule()
scheduler.start_scheduler()
print("程序执行完成")
except Exception as e:
print(f"程序执行出错: {e}")
import traceback
traceback.print_exc()
return 1
return 0
# 设置日志配置
setup_logging()
scheduler = DouyinAutoScheduler()
if args.test:
scheduler.run_test()
elif args.once:
scheduler.run_once()
else:
scheduler.setup_schedule()
scheduler.start_scheduler()
if __name__ == '__main__':
main()

73
app.py
View File

@ -1,4 +1,4 @@
from flask import Flask, jsonify
from flask import Flask
from flask_cors import CORS
import logging
import os
@ -20,13 +20,74 @@ logging.basicConfig(
]
)
# 导入并注册蓝图
from routers.rank_api_routes import rank_bp
app.register_blueprint(rank_bp)
# 导入路由
from routers.rank_api_routes import api
# 注册路由
@app.route('/')
def index():
"""API首页"""
from flask import jsonify
return jsonify({
"name": "抖音播放量数据API服务",
"version": "2.0",
"description": "主程序服务 - 整合小程序API功能",
"endpoints": {
"/api/videos": "获取视频列表 (支持分页和排序)",
"/api/top": "获取热门视频榜单",
"/api/search": "搜索视频",
"/api/detail": "获取视频详情",
"/api/stats": "获取统计信息",
"/api/health": "健康检查"
},
"features": [
"分页支持",
"多种排序方式",
"搜索功能",
"详情查看",
"统计分析",
"小程序优化"
]
})
# 注册小程序API路由
@app.route('/api/videos')
def get_videos():
return api.get_videos()
@app.route('/api/top')
def get_top():
return api.get_top()
@app.route('/api/search')
def search():
return api.search()
@app.route('/api/detail')
def get_detail():
return api.get_detail()
@app.route('/api/stats')
def get_stats():
return api.get_stats()
@app.route('/api/health')
def health_check():
return api.health_check()
if __name__ == '__main__':
print("启动主程序服务...")
print("服务地址: http://localhost:5001")
print("服务地址: http://localhost:5000")
print("API接口列表:")
print(" - GET / 显示API信息")
print(" - GET /api/videos?page=1&limit=20&sort=playcount 获取视频列表(总播放量排序)")
print(" - GET /api/videos?page=1&limit=20&sort=growth 获取视频列表(增长排序,默认昨天到今天的差值)")
print(" - GET /api/videos?page=1&limit=20&sort=growth&start_date=2025-10-16&end_date=2025-10-17 获取视频列表(自定义日期范围增长排序)")
print(" - GET /api/top?limit=10 获取热门榜单")
print(" - GET /api/search?q=关键词&page=1&limit=10 搜索视频")
print(" - GET /api/detail?id=视频ID 获取视频详情")
print(" - GET /api/stats 获取统计信息")
print(" - GET /api/health 健康检查")
print("专为小程序优化:分页、搜索、详情、统计、增长排序、自定义日期范围")
app.run(host='0.0.0.0', port=5001, debug=True)
app.run(host='0.0.0.0', port=5000, debug=True)

View File

@ -3,7 +3,6 @@ import importlib
# 数据库配置
MONGO_URI = "mongodb://localhost:27017"
# MONGO_URI = "mongodb://mongouser:Jdei2243afN@172.16.0.6:27017,172.16.0.4:27017/test?replicaSet=cmgo-r6qkaern_0&authSource=admin"
MONGO_DB_NAME = "Rankings"
# 应用配置
@ -14,7 +13,4 @@ DEBUG = APP_ENV == 'development'
LOG_LEVEL = 'INFO'
LOG_DIR = 'logs'
# 定时器配置
SCHEDULER_TIME = "24:00" # 定时器执行时间,格式为 HH:MM (24小时制)
print(f"Successfully loaded configuration for environment: {APP_ENV}")

View File

@ -1,20 +0,0 @@
# Web抓取相关
selenium>=4.15.0
chromedriver-autoinstaller>=0.6.0
webdriver-manager>=4.0.0
# Web服务框架
flask>=2.3.0
flask-cors>=4.0.0
# 数据库
pymongo>=4.5.0
# 定时任务
schedule>=1.2.0
# 系统工具
psutil>=5.9.0
# 数据处理
pathlib2>=2.3.7; python_version<"3.4"

View File

@ -5,9 +5,9 @@
本API服务提供抖音播放量数据的查询、搜索、统计等功能专为小程序优化设计。
**基础信息**
- 服务地址:`http://localhost:5001`
- 服务地址:`http://localhost:5000`
- 数据源MongoDB数据库
- 数据更新:每日14:23自动更新
- 数据更新:每晚24:00自动更新
- 响应格式JSON
## 通用响应格式
@ -85,13 +85,12 @@ GET /
"version": "2.0",
"description": "主程序服务 - 整合小程序API功能",
"endpoints": {
"/api/rank/videos": "获取视频列表 (支持分页和排序)",
"/api/rank/top": "获取热门视频榜单",
"/api/rank/search": "搜索视频",
"/api/rank/detail": "获取视频详情",
"/api/rank/stats": "获取统计信息",
"/api/rank/health": "健康检查",
"/api/rank/rankings": "获取榜单列表"
"/api/videos": "获取视频列表 (支持分页和排序)",
"/api/top": "获取热门视频榜单",
"/api/search": "搜索视频",
"/api/detail": "获取视频详情",
"/api/stats": "获取统计信息",
"/api/health": "健康检查"
},
"features": [
"分页支持",
@ -109,43 +108,34 @@ GET /
**接口地址**
```
GET /api/rank/videos
GET /api/videos
```
**功能描述**
获取视频合集列表,支持分页和排序
获取分页的视频合集列表,支持多种排序方式
**请求参数**
| 参数名 | 类型 | 必填 | 默认值 | 说明 |
|--------|------|------|--------|------|
| page | int | 否 | 1 | 页码 |
| limit | int | 否 | 20 | 每页数量 |
| sort | string | 否 | playcount | 排序方式playcount(播放量), growth(增长量) |
| start_date | string | 否 | 昨天 | 增长计算开始日期(YYYY-MM-DD) |
| end_date | string | 否 | 今天 | 增长计算结束日期(YYYY-MM-DD) |
**排序说明**
- `playcount`: 按当前播放量从高到低排序
- `growth`: 按播放量增长差值从大到小排序
- 计算公式:增长值 = 结束日期播放量 - 开始日期播放量
- 只显示增长为正数的合集
- 排序规则:增长差值越大,排名越靠前
| sort | string | 否 | playcount | 排序方式playcount(播放量) / growth(增长量) |
| start_date | string | 否 | 昨天 | 增长计算开始日期(格式: YYYY-MM-DD) |
| end_date | string | 否 | 今天 | 增长计算结束日期(格式: YYYY-MM-DD) |
**使用示例**
```
# 按播放量排序(当前播放量从高到低)
GET /api/rank/videos?page=1&limit=20&sort=playcount
# 按播放量排序
GET /api/videos?page=1&limit=20&sort=playcount
# 按增长量排序(播放量差值从大到小,默认昨天到今天的增长)
GET /api/rank/videos?page=1&limit=20&sort=growth
# 按增长量排序(默认昨天到今天的增长)
GET /api/videos?page=1&limit=20&sort=growth
# 按自定义日期范围的增长排序(播放量差值从大到小)
GET /api/rank/videos?page=1&limit=20&sort=growth&start_date=2025-10-16&end_date=2025-10-17
# 按自定义日期范围的增长排序
GET /api/videos?page=1&limit=20&sort=growth&start_date=2025-10-16&end_date=2025-10-17
```
**响应示例**
播放量排序响应:
```json
{
"success": true,
@ -176,49 +166,11 @@ GET /api/rank/videos?page=1&limit=20&sort=growth&start_date=2025-10-16&end_date=
}
```
增长榜排序响应包含额外的growth字段
```json
{
"success": true,
"data": [
{
"_id": "674f1234567890abcdef",
"batch_time": "2025-10-17 15:30:00",
"mix_name": "热门合集1",
"video_url": "https://www.douyin.com/video/xxx",
"playcount": "1.2亿",
"play_vv": 120000000,
"request_id": "request_xxx",
"rank": 1,
"growth": 5000000,
"start_date": "2025-10-16",
"end_date": "2025-10-17",
"cover_image_url": "https://p3.douyinpic.com/xxx",
"cover_backup_urls": ["url1", "url2"]
}
],
"pagination": {
"page": 1,
"limit": 20,
"total": 50,
"pages": 3,
"has_next": true,
"has_prev": false
},
"sort_by": "growth",
"date_range": {
"start_date": "2025-10-16",
"end_date": "2025-10-17"
},
"update_time": "2025-10-17 15:30:00"
}
```
### 3. 获取热门榜单
**接口地址**
```
GET /api/rank/top
GET /api/top
```
**功能描述**
@ -231,7 +183,7 @@ GET /api/rank/top
**使用示例**
```
GET /api/rank/top?limit=10
GET /api/top?limit=10
```
**响应示例**
@ -261,7 +213,7 @@ GET /api/rank/top?limit=10
**接口地址**
```
GET /api/rank/search
GET /api/search
```
**功能描述**
@ -276,7 +228,7 @@ GET /api/rank/search
**使用示例**
```
GET /api/rank/search?q=关键词&page=1&limit=10
GET /api/search?q=关键词&page=1&limit=10
```
**响应示例**
@ -314,7 +266,7 @@ GET /api/rank/search?q=关键词&page=1&limit=10
**接口地址**
```
GET /api/rank/detail
GET /api/detail
```
**功能描述**
@ -327,7 +279,7 @@ GET /api/rank/detail
**使用示例**
```
GET /api/rank/detail?id=674f1234567890abcdef
GET /api/detail?id=674f1234567890abcdef
```
**响应示例**
@ -354,7 +306,7 @@ GET /api/rank/detail?id=674f1234567890abcdef
**接口地址**
```
GET /api/rank/stats
GET /api/stats
```
**功能描述**
@ -408,7 +360,7 @@ GET /api/rank/stats
**接口地址**
```
GET /api/rank/health
GET /api/health
```
**功能描述**
@ -454,7 +406,7 @@ GET /api/rank/health
```javascript
// 小程序端示例
wx.request({
url: 'http://localhost:5001/api/rank/videos',
url: 'http://localhost:5000/api/videos',
data: {
page: 1,
limit: 20,

View File

@ -13,27 +13,29 @@
### 项目结构(简版)
```
项目根/
├── app.py # 主服务入口5001
├── app.py # 主服务入口5000
├── Timer_worker.py # 定时抓取任务
├── config.py # 全局配置
├── database.py # 数据库封装
├── docs/ # 项目文档
│ ├── README.md # 项目说明文档
│ ├── API接口文档.md # API接口说明
│ └── requirements.txt # 依赖包列表
├── routers/
│ └── rank_api_routes.py # 小程序API逻辑模块
└── handlers/
└── Rankings/
├── rank_data_scraper.py # 抓取脚本Selenium+CDP
└── drivers/ # 浏览器驱动等
└── chromedriver.exe # Chrome驱动程序
├── handlers/
│ └── Rankings/
│ ├── rank_data_scraper.py # 抓取脚本Selenium+CDP
│ ├── config/
│ │ └── chrome_profile/
│ │ └── douyin_persistent/ # 持久化Chrome用户目录登录态
│ ├── data/ # 数据导出/缓存(可选)
│ ├── docs/ # 使用说明与文档
│ ├── drivers/ # 浏览器驱动等
│ └── logs/ # 运行日志
└── 项目启动说明.md
```
- 核心数据表:`Rankings/Rankings_list`
- 日志示例:`handlers/Rankings/logs/douyin_scraper.log`
## 3. 服务与端口
- 单一服务:`app.py`(默认端口 `5001`,包含小程序 API 路由)
- 单一服务:`app.py`(默认端口 `5000`,包含小程序 API 路由)
## 4. 一键启动
- 启动主服务:
@ -48,7 +50,7 @@
## 5. 使用步骤(首次登录与日常)
- 安装依赖:
```bash
pip install -r docs/requirements.txt
pip install -r handlers/Rankings/docs/requirements.txt
```
- 第一次使用(登录抖音):
- 运行抓取脚本:`python handlers/Rankings/rank_data_scraper.py`
@ -58,15 +60,15 @@
- 日常流程:
- 抓取:`python handlers/Rankings/rank_data_scraper.py`
- 服务:`python app.py`(端口 `5001`
- 定时:`python Timer_worker.py`(每日 14:23 自动执行)
- 服务:`python app.py`(端口 `5000`
- 定时:`python Timer_worker.py`(每日 9:35 自动执行)
- 验证数据:
- MongoDB数据库 `Rankings`,集合 `Rankings_list`
- API 检查:
- `http://localhost:5001/api/rank/health`
- `http://localhost:5001/api/rank/videos?page=1&limit=20&sort=playcount`
- 增长榜:`http://localhost:5001/api/rank/videos?sort=growth&page=1&limit=20`
- `http://localhost:5000/api/health`
- `http://localhost:5000/api/videos?page=1&limit=20&sort_by=playcount`
- 增长榜:`http://localhost:5000/api/videos?sort_by=growth&page=1&limit=20`
## 6. 数据抓取流程(简版)
- 复用已登录的 Chrome 配置,滚动/刷新触发请求
@ -90,12 +92,11 @@
## 10. 快速排错
- MongoDB 连接失败:抓取脚本将仅保存本地文件日志
- ChromeDriver 配置:`handlers/Rankings/drivers/chromedriver.exe`
- 日志位置:`handlers/Rankings/logs/`(运行时自动创建)
- Chrome 配置:`handlers/Rankings/config/chrome_profile/`
- 日志位置:`handlers/Rankings/logs/`
## 11. 你需要知道的
- 当前架构下使用单一服务端口 `5001``routers/rank_api_routes.py` 提供逻辑模块,由 `app.py` 注册路由并统一对外服务。
- 当前架构下没有独立的 `5001` 端口`routers/rank_api_routes.py` 提供逻辑模块,由 `app.py` 注册路由并统一对外服务`5000`
- 抓取脚本与 API 使用同一集合,数据结构一致
- 小程序 API 专注返回易用字段(封面、播放量、时间、链接)
- 可直接在现有数据上新增排序或过滤,保持接口向后兼容
- ChromeDriver 已配置本地版本,避免网络下载问题
- 可直接在现有数据上新增排序或过滤,保持接口向后兼容

View File

@ -0,0 +1,8 @@
selenium>=4.15.0
schedule>=1.2.0
pymongo>=4.5.0
flask>=2.3.0
flask-cors>=4.0.0
chromedriver-autoinstaller>=0.6.0
webdriver-manager>=4.0.0
psutil>=5.9.0

View File

@ -31,11 +31,8 @@ from selenium.webdriver.chrome.options import Options
# 保留导入但默认不使用webdriver_manager避免网络下载卡顿
from webdriver_manager.chrome import ChromeDriverManager # noqa: F401
import chromedriver_autoinstaller
import sys
import os
# 添加项目根目录到 Python 路径
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from database import db
from pymongo import MongoClient
from pymongo.errors import ConnectionFailure
# 配置日志
@ -63,6 +60,7 @@ class DouyinPlayVVScraper:
self.driver = None
self.play_vv_items = [] # list of dicts: {play_vv, formatted, url, request_id, mix_name, watched_item}
self.captured_responses = []
self.mongo_client = None
self.db = None
self.collection = None
self._cleanup_old_profiles()
@ -71,17 +69,33 @@ class DouyinPlayVVScraper:
def _setup_mongodb(self):
"""设置MongoDB连接"""
try:
# 使用 database.py 中的连接
self.db = db
# 设置集合
# MongoDB连接配置
mongo_host = os.environ.get('MONGO_HOST', 'localhost')
mongo_port = int(os.environ.get('MONGO_PORT', 27017))
mongo_db = os.environ.get('MONGO_DB', 'Rankings')
mongo_collection = os.environ.get('MONGO_COLLECTION', 'Rankings_list')
# 创建MongoDB连接
self.mongo_client = MongoClient(mongo_host, mongo_port, serverSelectionTimeoutMS=5000)
# 测试连接
self.mongo_client.admin.command('ping')
# 设置数据库和集合
self.db = self.mongo_client[mongo_db]
self.collection = self.db[mongo_collection]
logging.info(f'MongoDB连接成功使用数据库: {self.db.name},集合: {mongo_collection}')
logging.info(f'MongoDB连接成功: {mongo_host}:{mongo_port}/{mongo_db}.{mongo_collection}')
except ConnectionFailure as e:
logging.warning(f'MongoDB连接失败: {e}')
logging.info('将仅保存到本地文件')
self.mongo_client = None
self.db = None
self.collection = None
except Exception as e:
logging.warning(f'MongoDB设置出错: {e}')
self.mongo_client = None
self.db = None
self.collection = None
@ -635,10 +649,10 @@ class DouyinPlayVVScraper:
elapsed = int(time.time() - start)
if elapsed - last_progress >= 5:
last_progress = elapsed
logging.info(f'进度: {elapsed}/{duration_s}, 目标数量: {len(self.play_vv_items)}')
logging.info(f'进度: {elapsed}/{duration_s}s, 已发现play_vv候选 {len(self.play_vv_items)}')
time.sleep(0.8)
logging.info(f'网络收集完成,共发现 {len(self.play_vv_items)}目标')
logging.info(f'网络收集完成,共发现 {len(self.play_vv_items)}play_vv候选')
def parse_ssr_data(self):
@ -698,7 +712,7 @@ class DouyinPlayVVScraper:
def save_to_mongodb(self):
"""将数据保存到MongoDB"""
if self.collection is None:
if self.mongo_client is None or self.collection is None:
logging.warning('MongoDB未连接跳过数据库保存')
return
@ -783,5 +797,6 @@ if __name__ == '__main__':
os.environ['AUTO_CONTINUE'] = '1'
print('=== Selenium+CDP 抖音play_vv抓取器 ===')
print('将复用本地Chrome配置并抓取网络响应中的play_vv')
scraper = DouyinPlayVVScraper(args.url, auto_continue=args.auto, duration_s=args.duration)
scraper.run()

File diff suppressed because it is too large Load Diff